PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Zinc sulphide (ZnS) nanparticles for advanced application

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Nanocząstki siarczku cynku (ZnS) do zaawansowaych aplikacji
Języki publikacji
EN
Abstrakty
EN
Zinc sulphide (ZnS) is one of the first discovered semiconducting materials, which due to their unique properties can be applied in optoelectronic devices, such as ultraviolet-light-emitting diodes, flat-panel displays, electroluminescent and sensors. As we present in this short review, the properties of ZnS are highly dependent on their size, structural form and morphology. Nowadays, one-dimensional (1D) structures of ZnS have been of great interest, mainly due to their luminescent and electrical properties.
PL
Siarczek cynku (ZnS) jest jednym z pierwszych poznanych półprzewodnikowych materiałów, który dzięki swoim unikalnym właściwościom znalazł zastosowanie w optoelektronice m.in. do budowy diod świecących w zakresie ultrafioletu, płaskich monitorów, diod elektroluminescencyjnych i czujników. Jak zostanie to pokazane w tym krótkim artykule przeglądowym, właściwości ZnS silnie zależą od rozmiaru, morfologii i struktury krystalicznej. Obecnie szczególnym zainteresowaniem cieszą się jednowymiarowe kryształy (1D) ze względu na swoje właściwości luminescencyjne i elektryczne.
Rocznik
Strony
125--134
Opis fizyczny
Bibliogr. 27 poz., wz., il.
Twórcy
autor
  • Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology
autor
  • Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology
autor
  • Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology
autor
  • Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology
  • Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology
Bibliografia
  • [1] Fang X., Zhai T., Gautam U.K., Li L., Wu L., Bando Y., GolbergD., ZnS nanostructures: From synthesis to applications, Prog. Mater. Sci., Vol. 56(2), 2011, 175–287.
  • [2] Adachi M., Lockwood D.J., Self-Organized Nanoscale Materials, Springer Science+Business Media, 2006.
  • [3] Siegel R.W., Characterization of nanoparticle and nanophase materials, http://www.osti.gov/scitech/biblio/10133547 (online: 25.06.2016).
  • [4] Cao G., Nanostructures & Nanomaterials. Imperial College Press, 2004.
  • [5] Ali H., Karim S., Rafiq M.A., Maaz K., Rahman A.U., Nisar A., Ahmad M., Electrical conduction mechanism in ZnS nanoparticles, J. Alloys Compd., Vol. 612, 2014, 64–68.
  • [6] Wu P., He Y., Wang H.F., Yan X.P., Conjugation of glucose oxidase onto Mn-doped ZnS quantum dots for phosphorescent sensing of glucose in biological fluids, Anal. Chem., Vol. 82(4), 2010, 1427–1433.
  • [7] Dutta K., Manna S., De S.K., Optical and electrical characterizations of ZnS nanoparticles embedded in conducting polymer, Synth. Met., Vol. 159(3–4), 2009, 315–319.
  • [8] Kelsall R.W., Hamley I.W., Geoghegan M. , Nanotechnologie, Wydawnictwo Naukowe PWN, Warsaw 2008.
  • [9] Kuchibhatla S.V.N.T., Karakoti A.S., Bera D., Seal S., One dimensional nanostructured materials, Prog. Mater. Sci., Vol. 52(5), 2007, 699–913.
  • [10] Biswas S., Kar S., Fabrication of ZnS nanoparticles and nanorods with cubic and hexagonal crystal structures: a simple solvothermal approach, Nanotechnology, Vol. 19(4), 2008.
  • [11] Chen H., Shi D., Qi J., Jia J., Wang B., The stability and electronic properties of wurtzite and zinc-blende ZnS nanowires, Phys. Lett. A, Vol. 373,(3), 2009, 371–375.
  • [12] Rohwer L.S., Nalwa H.S., Handbook of Luminescence, Display Materials, and Devices: Display devices, American Scientific Publishers, 2003.
  • [13] Kar S., Chaudhuri S., Controlled synthesis and photoluminescence properties of ZnS nanowires and nanoribbons, J. Phys. Chem. B, Vol. 109(8), 2015, 3298–302.
  • [14] Bringuier E., Tentative anatomy of ZnS-type electroluminescence, J. Appl. Phys., Vol. 75(9), 1994, 4291–4312.
  • [15] Bryan J.D., Gamelin D.R., Doped Semiconductor Nanocrystals: Synthesis, Characterization, Physical Properties and Applications, Prog. Inorg. Chem., Vol. 54, 2005, 47–126.
  • [16] Zhao Y., Hong J.M., Zhu J.J., Microwave-assisted self-assembled ZnS nanoballs, J. Cryst. Growth, Vol. 270(3–4), 2004, 438–445.
  • [17] Li Y., He X., Cao M., Micro-emulsion-assisted synthesis of ZnS nanospheres and their photocatalytic activity, Mater. Res. Bull., Vol. 43(11), 2008, 3100–3110.
  • [18] Hao Y., Meng G., Wang Z.L., Ye C. , Zhang L., Periodically twinned nanowires and polytypic nanobelts of ZnS: The role of mass diffusion in vapor-liquid-solid growth, Nano Lett., Vol. 6(8), 2006, 1650–1655.
  • [19] Lin D., Wu H., Zhang R., Pan W., Preparation of ZnS Nanofibers Via Electrospinning, J. Am. Ceram. Soc., Vol. 90(11), 2007, 3664–3666.
  • [20] Walerczyk W., Solwotermalna synteza nanokrystalicznych spineli glinowo-cynkowych modyfikowanych jonami metali przejściowych jako katalizatorów i nośników katalizatorów [online: 25.03.2016] http://biblioteka.intibs.pl/lib/exe/fetch.php?media=doktoraty-w:wiktoria.walerczyk.pdf. (online: 25.03.2016).
  • [21] Demazeau G., Impact of high pressures in solvothermal processes, J. Phys. Conf. Ser., Vol. 215(1), 2010.
  • [22] Fan L., Song H., Zhao H., Pan G., Yu H., Bai X., Li S., Lei Y., Dai Q., Qin R., Wang T., Dong B., Zheng Z., Ren X., Solvothermal synthesis and photoluminescent properties of ZnS/cyclohexylamine: inorganic-organic hybrid semiconductor nanowires, J. Phys. Chem. B, Vol. 110(26), 2006, 12948–12953.
  • [23] Xi G., Wang C., Wang X., Zhang Q., Xiao H., From ZnS ‚ en 0.5 Nanosheets to Wurtzite ZnS Nanorods under Solvothermal Conditions, J. Phys. Chem. C, Vol. 112, 2008, 1946–1952.
  • [24] Talapin D.V., Lee J.S., Kovalenko M.V., Shevchenko E.V., Prospects of Colloidal Nanocsrystals for Electronic and Optoelectronic Applications, Chem. Rev., Vol. 110, 2010, 389–458.
  • [25] He J.H., Zhang Y.Y., Liu J., Moore D., Bao G., Wang Z.L., ZnS / Silica Nanocable Field Effect Transistors as Biological and Chemical Nanosensors, J. Phys. Chem. C., Vol. 111(33), 2007, 12152–12156.
  • [26] Lu L., Xu Z., Zhang F., Zhao S., Wang L., Zhuo Z., Song D., Zhu H., Wang Y., Using ZnS Nanostructured Thin Films to Enhance Light Extraction from Organic Light- Emitting Diodes, Energy Fuels, vol. 24, 2010, 3743-47.
  • [27] Huang C.Y., Wang D.Y., Wang C.H., Chen Y.T., Wang Y.T., Jiang Y.T., Yang Y.J., Chen C.C., Chen Y.F., Efficient light harvesting by photon downconversion and light trapping in hybrid ZnS nanoparticles/Si nanotips solar cells, ACS Nano, vol. 4(10), 2010, 5849–5854.
Uwagi
EN
This work was financially supported by the Foundation for Polish Science within the VI edition of the Homing Plus program, project number HOMING PLUS/2012-6/5 and National Centre for Research and Development under Lider Program, contract no. LIDER/009/185/L-5/13/NCBR/2014.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-339cb958-edaf-4a0a-9c56-6ff1801d271b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.