PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A conceptual sector-scale numerical modeling of a landslide in an open pit mine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, an old rotational landslide that has reactivated in the NW sector of an open-pit mine operated within the gneiss rock unit was evaluated for geological and hydrogeological properties. The pit slopes were susceptible to mass movement when there were variations in water inflows. Considering this fact, a conceptual numerical model concerning geostructural features, rainfall infiltration, and varying hydrological conditions was constructed. Initially, finite element (FE) groundwater seepage analyses were performed to evaluate the effect of water flow on stability in the dry and rainy seasons. The rainy season was simulated by vertical infiltration. Since the dewatering measures are of importance in open pit slope instability mitigation, pumping wells were designed to control water flow through the disturbed zone to improve the stability of the sector that can be triggered again with changing environmental conditions. The performance and organization of the pumping wells were also simulated in the FE model. This FE model was part of a dewatering plan. From this, the effect of the pumping rate from the wells on the stability of the sector was revealed. It was also found that there should be an increase in the pumping rate in the rainy season.
Rocznik
Strony
275--287
Opis fizyczny
Bibliogr. 49 poz., rys., tab., wykr.
Twórcy
Bibliografia
  • [1] D.R. Piteau, Geological factors significant to the stability of slopes cut in rock. In: P.W.J. van Rensburg (Ed.) Planning Open Pit Mines Proceedings of the Symposium on the Theoretical Background to the Planning of Open Pit Mines with Special References to Slope Stability 1970, Balkema (1971).
  • [2] D.C. Wyllie, C.W. Mah, Rock Slope Engineering Civil and Mining, Spon. Press, New York (2004).
  • [3] J. Read, P. Stacey, Guidelines for Open Pit Slope Design. CRC Press/Balkema, Leiden, Netherlands (2009).
  • [4] R.E. Hammah, J.H. Curran, T.E. Yacoub, B. Corkum, Stability analysis of rock slopes using the finite element method. In: Proceedings of the ISRM Regional Symposium EUROCK 2004 and the 53rd Geomechanics Colloquy, Salzburg, Austria (2004).
  • [5] R.E. Hammah, T.E. Yacoub, B. Corkum, J.H.A. Curran, The shear strength reduction method for the Generalized Hoek-Brown Criterion. In: Proceedings of 40th U.S. Symposium on Rock Mechanics 2005, Alaska (2005a).
  • [6] R.E. Hammah, T.E. Yacoub, B. Corkum, J.H.A. Curran, Comparison of finite element slope stability analysis with conventional limit-equilibrium investigation. In: Proceedings of 58th Canadian Geotechnical and 6th Joint IAH-CNC and CGS Groundwater Specialty Conferences 2005, Canada (2005b).
  • [7] A.J. Li, R.S. Merifield, A.V. Lyamin, Stability Chartsfor Rock Slopes Based on The Hoek-Brown Failure Criterion. Int. J. Rock Mech. Min. Sci. 45 (5), 689-700 (2008). DOI: https://doi.org/10.1016/j.ijrmms.2007.08.010.
  • [8] A. Azami, T. Yacoub, J. Curran, D. Wai, A constitutive model for jointed rock mass. In: Proceedings of International Society for Rock Mechanics and Rock Engineering (ISRM) Symposium (EUROCK) 2013,Wroclaw, Poland (2013).
  • [9] R. Singh, R.K. Umrao, T.N. Singh, Stability Evaluation of Road-Cut Slopesin the Lesser Himalaya of Uttarakhand, India: Conventional and Numerical Approaches. Bull. Eng. Geol. Environ. 73 (3), 845-857 (2014). DOI: https://doi.org/10.1007/s10064-013-0532-1.
  • [10] C.W. Sun,J.R. Chai, Z.G. Xu, Y. Qin, X.Z. Chen, Stability Chartsfor Rock Mass Slopes Based on the Hoek-Brown Strength Reduction Technique. Eng. Geol. 214, 94-106 (2016). DOI: https://doi.org/10.1016/j.enggeo.2016.09.017.
  • [11] C.K. Aswathi, A. Jana, A. Dey, S. Sreedeep, Stability assessment of a heavily jointed rock slope using limit equilibrium and finite element methods. In: Proceedings of Indian Geotechnical Conference (GeoNEst) 2017, Guwahati, India (2017).
  • [12] S.P. Pradhan, T. Siddique, Stability Assessment of Landslide-Prone Road Cut Rock Slopes in Himalayan Terrain: A Finite Element Method Based Approach. J. Rock Mech. Geotech. Eng. 12 (1), 59-73 (2020). DOI: https://doi.org/10.1016/j.jrmge.2018.12.018.
  • [13] S. Sarkar, K. Pandit, N. Dahiya, P. Chandna, Quantified Landslide Hazard Assessment Based on Finite Element Slope Stability Analysis for Uttarkashi – Gangnani Highway in Indian Himalayas. Nat Hazards 106, 1895-1914 (2021). DOI: https://doi.org/10.1007/s11069-021-04518-x.
  • [14] R.E. Hammah, T.E. Yacoub, B. Corkum, F. Wibowo, J.H. Curran, Analysis of blocky rock slopes with finite element shear strength reduction analysis. In: Proceedings of 1st Canada – U.S. Rock Mechanics Symposium 2007, Vancouver, Canada (2007).
  • [15] M. Abdulai, M. Sharifzadeh, Uncertainty and Reliability Analysis of Open Pit Rock Slopes: A Critical Review of Methods of Analysis. Geotech. Geol. Eng. 37, 1223-1247 (2019). DOI: https://doi.org/37.10.1007/s10706-018-0680-y.
  • [16] P.J. Vardon, Climatic Influence on Geotechnical Infrastructure: A Review. Environ. Geotechn. 2 (3), 166-174 (2015). DOI: https://doi.org/10.1680/envgeo.13.00055.
  • [17] K. Martinović, K. Gavin, C. Reale, C. Mangan, Rainfall Thresholds as a Landslide Indicator for Engineered Slopes on the Irish Rail Network. Geomorphology 306, 40-50 (2018). DOI: https://doi.org/10.1016/j.geomorph.2018.01.006.
  • [18] Y. Pan, G. Wu, Z. Zhao, L. He, Analysis of Rock Slope Stability Under Rainfall Conditions Considering the WaterInduced Weakening of Rock. Comput. Geotech. 128, 103806 (2020). DOI: https://doi.org/10.1016/j.compgeo.2020.103806.
  • [19] Q. Li, Y.M. Wang, K.B. Zhang, H. Yu, Z.Y. Tao, Field investigation and numerical study of a siltstone slope instability induced by excavation and rainfall. Landslides 17, 1485-1499 (2020). DOI: https://doi.org/10.1007/s10346-020-01396-5.
  • [20] T. Kadakci Koca, PhD thesis, Multi-Temporal Stability Investigation of Landslides in Çağlayan Dam Reservoir Area. Dokuz Eylül University, İzmir, Turkey (2021).
  • [21] F. Cai, K. Ugai, Numerical Analysis of Rainfall Effects on Slope Stability. Int. J. Geomech. 4 (2), 69-78 (2004). DOI: https://doi.org/10.1061/(ASCE)1532-3641(2004)4:2(69).
  • [22] S. Bai,J.Wang, B. Thiebes, C. Cheng, Y. Yang, Analysis of The Relationship of Landslide Occurrence with Rainfall: A Case Study of Wudu County, China. Arab. J. Geosci. 7 (4), 1277-1285 (2014). DOI: https://doi.org/10.1007/s12517-013-0939-9.
  • [23] J. Beullens, D. Van de Velde, J. Nyssen, Impact of Slope Aspect on Hydrological Rainfall and on The Magnitude of Rill Erosion in Belgium and Northern France. Catena 114 (1), 129-139 (2014). DOI: https://doi.org/10.1016/j.catena.2013.10.016.
  • [24] M. Rabie, Comparison Study Between Traditional and Finite Element Methods for Slopes Under Heavy Rainfall. HBRC J. 10 (2), 160-168 (2014). DOI: https://doi.org/10.1016/j.hbrcj.2013.10.002.
  • [25] H. Dingiu, T. Zhigang, H. Zhenli, W. Jiamin, Numerical Analysis of Rainfall Saturated-Unsaturated Seepage and Stability of Expansive Soil Slope with Fissures. In: Proceedings of International Conference on Structural, Mechanical and Materials Engineering (ICSMME) 2015, Dalian, China (2015).
  • [26] R.C. Sidle, T.A. Bogaard, Dynamic Earth System and Ecological Controls of Rainfall-Initiated Landslides. Earth Sci. Rev. 159, 275-291 (2016). DOI: https://doi.org/10.1016/j.earscirev.2016.05.013.
  • [27] B. Wang, P.J. Vardon, M.A. Hicks, Rainfall-Induced Slope Collapse with Coupled Material Point Method. Eng. Geol. 239, 1-12 (2018). DOI: https://doi.org/10.1016/j.enggeo.2018.02.007.
  • [28] F.K. Rengers, L.A. McGuire, N.S. Oakley, J.W. Kean, D.M. Staley, H. Tang, Landslides After Wildfire: Initiation, Magnitude, and Mobility. Landslides 17, 2631-2641 (2020). DOI: https://doi.org/10.1007/s10346-020-01506-3.
  • [29] L.C. Atkinson, The role and mitigation of groundwater in slope stability, in: Hustrulid et al. (Eds.), Slope Stability in Surface Mining, Littleton, Colorado, USA (1998).
  • [30] G. Beale,J. Read, Guidelinesfor Evaluating Water in Pit Slope Stability, CRC Press/Balkema, Leiden, Netherlands (2013).
  • [31] International Association of Engineering Geology (IAEG) Commission on Landslides, Suggested Nomenclature for Landslides, Bull. Int. Assoc. Eng. Geol. 41 (1), 13-16 (1990). DOI: https://doi.org/10.1007/BF02590202.
  • [32] C. Tang, J. Zhu, W.L. Li, J.T. Liang, Rainfall-triggered Debris Flows Following the Wenchuan Earthquake. Bull. Eng. Geol. Environ. 68, 187-194 (2009). DOI: https://doi.org/10.1007/s10064-009-0201-6.
  • [33] S. Kimoto, F. Oka, E. García, Numerical Simulation of the Rainfall Infiltration on Unsaturated Soil Slope Considering a Seepage Flow. Geotech. Eng. J. SEAGS & AGSSEA 44 (3), 1-13 (2013).
  • [34] K. Sasahara, N. Sakai, Shear and Compression Strain Development in Sandy Model Slope Under Repeated Rainfall. Soils Found. 57 (6), 920-934 (2017). DOI: https://doi.org/10.1016/j.sandf.2017.08.021.
  • [35] Y. Chen, G. Liu, N. Li, X. Du, S. Wang, R. Azzam, Stability evaluation ofslope subjected to seismic effect combined with consequent rainfall. Eng. Geol. 266, 105461 (2020). DOI: https://doi.org/10.1016/j.enggeo.2019.105461.
  • [36] https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=H&m=AYDIN accessed: 11.01.2022.
  • [37] E. Hoek, C. Carranza-Torres, B. Corkum, Hoek-Brown Criterion-2002 edition, in: Proceedings of North American Rock Mechanics Symposium 2002, Canada (2002).
  • [38] T. Kadakci Koca, M.Y. Koca Comparative Analyses of Finite Element and Limit-Equilibrium Methods for Heavily Fractured Rock Slopes. J. Earth Syst. Sci. 129, 49 (2020).
  • [39] D.P. Kanunga, A. Pain, S. Sharma Finite element modeling approach to assess the stability of debris and rock slopes: a case study from the Indian Himalayas. Nat. Hazards 69, 1-24 (2013). DOI: https://doi.org/10.1007/s11069-013-0680-4.
  • [40] Y.M. Cheng, C.K. Lau Slope Stability Analysis and Stabilization; 2nd ed. CRC Press Taylor & Francis Group, New York (2014).
  • [41] V. Gupta, R.K. Bhasin, A.M. Kaynia, V. Kumar, A.S. Saini, R.S. Tandon, T. Pabst Finite element analysis of failed slope by shear strength reduction technique: a case study for Surabhi Resort Landslide, Mussoorie township, Garhwal Himalaya. Geomatics, Nat. Hazards Risk 7 (5), 1677-1690 (2016). DOI: https://doi.org/10.1080/19475705.2015.1102778.
  • [42] G.C. Komadja, S.P. Pradhan, A.R. Roul, B. Adebayo, J.B. Habinshuti, L.A. Glodji A.P. Onwualu Assessment of stability of a Himalayan road cut slope with varying degrees of weathering: A finite-element-model-based approach. Heliyon 6, e05297 (2020). DOI: https://doi.org/10.1016/j.heliyon.2020.e05297.
  • [43] T. Kadakci Koca, M.Y. Koca, Slope Stability Assessment of Rock Slopes in an Open Pit Albite Mine Using Finite Element Method (FEM), Geol. Eng. J. 38 (1), 1-17 (2014).
  • [44] S.D. Karagöz, M.Y. Koca, Monitoring of the Landslide Occurred in the Alipaşa Open-Pit Albite Mine by Using GPS and the Recognition of Causes of This Phenomenon. Geol. Eng. J. 40 (1), 27-52 (2016).
  • [45] D.G. Fredlund, A. Xing, Equations for the Soil-Water Characteristic Curve. Can. Geotech. J. 31, 521-532 (1994). DOI: http://dx.doi.org/10.1139/t94-061.
  • [46] G. Zhang, Y. Qian, Z. Wang, B. Zhao Analysis of Rainfall Infiltration Law in Unsaturated Soil Slope. Sci. World J. 2014, 567250 (2014). DOI: http://dx.doi.org/10.1155/2014/567250.
  • [47] B. Lowery, M.A. Arshad, R. Lal, W.J. Hickey, Soil water parameters and soil quality, in: J.W. Doran, A.J. Jones (Eds.) Methods for assessing soil quality, Soil Sci. Soc. Am. Spec. Publ. 49. SSSA, Madison, WI (1996).
  • [48] C.R. Alvarez, S. Perelman, Topsoil Structure in No-Tilled Soils in the Rolling Pampa, Argentina. Soil Res. 52 (6), 533-542 (2014). DOI: https://doi.org/10.1071/SR13281.
  • [49] L. Kafle, W. Xu, S. Zeng, T. Nagel, A Numerical Investigation of Slope Stability Influenced by The Combined Effects of Reservoir Water Level Fluctuations and Precipitation: A Case Study of The Bianjiazhai Landslide in China. Eng. Geol. 297, 106508 (2022). DOI: https://doi.org/10.1016/j.enggeo.2021.106508.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3397754a-81df-46d1-b4d0-f0ef5752e83b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.