Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the present project, the magnetic nanoparticles were used in a type of an ionic liquid based micro-extraction to measure trace amounts of cadmium in different real samples containing environmental water samples, saliva and human hair. In the optimum condition, the recovery percentages for the real sample were about 94.5% to 101.3%, showing the designed method is suitable to be used for analyzing the real environmental and biological samples. The main parameters were evaluated and optimized as follows: pH was 2.5, the volume of ionic liquid was 150 μl, the amount of Fe3O4 magnetic nanoparticles was 50mg, the volume of the complexing agent was 12 μl, and the vortex time was 1 min and 2 min for ionic liquid, and magnetic nanoparticle distribution steps, respectively. Also, the volume of the medium was 10 to 20 ml.
Wydawca
Czasopismo
Rocznik
Tom
Strony
359--377
Opis fizyczny
Bibliogr. 57 poz., 1 il. kolor., wykr.
Twórcy
autor
- Department of Chemistry, University of Mazandaran, Mazandaran, Iran
- Department of Chemistry, Payam Noor University, Maragheh, Iran
autor
- Department of Chemistry, Maragheh branch, Islamic Azad University, Maragheh, Iran
autor
- Department of Chemistry, Payam Noor University, Maragheh, Iran
Bibliografia
- [1] Ren, X.; Chen, C.; Nagatsu, M.; Wang, X.; Carbon nanotubes as adsorbents in environmental pollution management: a review. Chem. Eng. J. 2011, 170, 395-410. DOI: 10.1016/j.cej.2010.08.045
- [2] Grimm, N. B.; Foster, D.; Groffman, P.; Grove, J. M.; Hopkinson, C. S.; Nadelhoffer, K. J.; Peters, D. P.; The changing landscape: ecosystem responses to urbanization and pollution across climatic and societal gradients. Front. Ecol. Environ. 2008, 6, 264-272. DOI: 10.1890/070147
- [3] Bauerová, P.; Vinklerová, J.; Hraníček, J.; Čorba, V.; Vojtek, L.; Svobodová, J.; Vinkler, M.; Associations of urban environmental pollution with health-related physiological traits in a free-living bird species. Sci. Total Environ. 2017, 601, 1556-1565. DOI: 10.1016/j.scitotenv.2017.05.276
- [4] Siadati, S; Amin, M; Meghdad, M; Beheshti, A; Development and validation of a short runtime method for separation of trace amounts of 4-aminophenol, phenol, 3-nitrosalicylic acid and mesalamine by using HPLC system. Current Chem. Lett. 2021, 10, 151-160. DOI: 10.5267/j.ccl.2020.12.002
- [5] Ali, M.; Ali, S. R.; Amir, S. S.; Ali, A. T. S.; Synthesis and application of highly active dithiooxamide functionalised multi-walled carbon nanotubes toward mercury removal from aqueous solution. Pak. J. Sci. Ind. Res. A: Phys. Sci., 2016, 59, 23-29.
- [6] Siadati, S. A.; Amini-Fazl, M. S.; Babanezhad, E.; The possibility of sensing and inactivating the hazardous air pollutant species via adsorption and their [2+3] cycloaddition reactions with C20 fullerene. Sens. Actuat. B: Chem., 2016, 237, 591-596. DOI: 10.1016/j.snb.2016.06.125
- [7] Förstner, U.; Müller, G.; Heavy metal accumulation in river sediments: a response to environmental pollution. Geoforum, 1973, 4, 53-61. DOI: 10.1016/0016-7185(73)90006-7
- [8] Siadati, S.A. and Rezazadeh, S., 2022. The extraordinary gravity of three atom 4π-components and 1, 3-dienes to C20-nXn fullerenes; a new gate to the future of Nano technology. Sci. Rad., 2022, 1, 46-68. DOI: 10.58332/v22i1a04
- [9] Suvarapu, L. N.; Baek, S. O.; Determination of heavy metals in the ambient atmosphere: A review. Toxicol. Ind. health, 2017, 33, 79-96. DOI: 10.1177/0748233716654827
- [10] Pakravan, P; Siadati, S A; The possibility of using C20 fullerene and graphene as semiconductor segments for detection, and destruction of cyanogen-chloride chemical agent. J. Mol. Graph. Model., 2017,1,75, 80-84. DOI: 10.1016/j.jmgm.2016.12.001
- [11] Vessally, E.; Siadati, S.A.; Hosseinian, A.; Edjlali, L.; Selective sensing of ozone and the chemically active gaseous species of the troposphere by using the C20 fullerene and graphene segment. Talanta. 2017, 162, 505-510. DOI: 10.1016/j.talanta.2016.10.010
- [12] Saleh, T. A.; Adio, S. O.; Parthasarathy, P.; Danmaliki, G. I.; Scientific insights into modified and non-modified biomaterials for sorption of heavy metals from water. In Waste Management: Concepts, Methodologies, Tools, and Applications 2020, 807-827. DOI: 10.4018/978-1-7998-1210-4.ch037
- [13] Siadati, S.A.; Vessally, E.; Hosseinian, A.; Edjlali, L.; Possibility of sensing, adsorbing, and destructing the Tabun-2D-skeletal (Tabun nerve agent) by C20 fullerene and its boron and nitrogen doped derivatives. Syn. Met. 2016, 220, 606-611. DOI: 10.1016/j.synthmet.2016.08.003
- [14] Kumar, V.; Sharma, A.; Kaur, P.; Sidhu, G. P. S.; Bali, A. S.; Bhardwaj, R.; Cerda, A.; Pollution assessment of heavy metals in soils of India and ecological risk assessment: A state-of-the-art. Chemosphere, 2019, 216, 449-462. DOI: 10.1016/j.chemosphere.2018.10.066
- [15] Samavati, Z.; Samavati, A.; Goh, P.S.; Ismail, A. F.; Abdullah, M. S.; A comprehensive review of recent advances in nanofiltration membranes for heavy metal removal from wastewater. Chem. Eng. Res. Design, 2023, 189, 530-571. DOI: 10.1016/j.cherd.2022.11.042
- [16] Nair, G..; Sajini, T.; Mathew, B.; Advanced green approaches for metal and metal oxide nanoparticles synthesis and their environmental applications. Talanta Open. 2022, 5, 100080. DOI: 10.1016/j.talo.2021.100080
- [17] Mohammadi, M.; Siadati, S. A.; Ahmadi, S.; Habibzadeh, S.; Poor Heravi, M. R.; Hossaini, Z.; Vessally, E.; Carbon fixation of CO2 via cyclic reactions with borane in gaseous atmosphere leading to formic acid (and metaboric acid); A potential energy surface (PES) study. Front. Chem. 2022, 10, 1003086. DOI: 10.3389/fchem.2022.1003086
- [18] Liang, L.; Guo, L. D.; Tong, R.; Achmatowicz rearrangement-inspired development of green chemistry, organic methodology, and total synthesis of natural products. Account. Chem. Res. 2022, 55, 2326-40. DOI: 10.1021/acs.accounts.2c00358
- [19] Dadras, A.; Rezvanfar, M. A.; Beheshti, A.; Naeimi, S. S.; Siadati, S. A.; An urgent industrial scheme both for total synthesis, and for pharmaceutical analytical analysis of umifenovir as an anti-viral API for treatment of COVID-19. Comb. Chem. High Throughput Screen., 2022, 25, 838-846. DOI: 10.2174/1386207324666210203175631
- [20] Begum, S. J.; Pratibha, S.; Rawat, J. M.; Venugopal, D.; Sahu, P.; Gowda, A.; Qureshi, K. A.; Jaremko, M.; Recent advances in green synthesis, characterization, and applications of bioactive metallic nanoparticles. Pharmaceuticals. 2022, 15, 455. DOI: 10.3390/ph15040455
- [21] Siadati, A.; A theoretical study on the possibility of functionalization of C20 fullerene via its Diels-Alder reaction with 1, 3-butadiene. Lett. Org. Chem. 2016, 13, 2-6. DOI: 10.2174/1570178612666151002002526
- [22] Alcántara, A. R.; Dominguez de Maria, P.; Littlechild, J. A.; Schürmann, M.; Sheldon, R. A.; Wohlgemuth, R.; Biocatalysis as key to sustainable industrial chemistry. ChemSusChem. 2022, 15, e202102709. DOI: 10.1002/cssc.202102709
- [23] Siadati, S.A., Samadi, M., Soheilizad, M., Firoozpour, L., Payab, M., Bagherpour, S. and Dindari, B., 2023. A clean industrial scheme for de-ketalization of EIDD-2801 intermediate in water to give molnupiravir (MK-4482) anti-COVID-19 agent (containing its pharmaceutical analytical analysis). Sci. Rad., 2023, 2, 202-216. DOI: 10.58332/scirad2023v2i2a05
- [24] Roy, C.; Tremblay, P. Y.; Ayotte, P.; Is mercury exposure causing diabetes, metabolic syndrome and insulin resistance? A systematic review of the literature. Environ. Res. 2017, 156, 747-760. DOI: 10.1016/j.envres.2017.04.038
- [25] Wilk, A.; Kalisińska, E.; Kosik-Bogacka, D. I.; Romanowski, M.; Różański, J.; Ciechanowski, K.; Łanocha-Arendarczyk, N.; Cadmium, lead and mercury concentrations in pathologically altered human kidneys. Environ. Geochem. Health. 2017, 39, 889-899. DOI: 10.1007/s10653-016-9860-y
- [26] Lentini, P.; Zanoli, L.; Granata, A.; Signorelli, S. S.; Castellino, P.; Dell'Aquila, R.; Kidney and heavy metals-The role of environmental exposure. Mol. Med. Rep. 2017, 15, 3413-3419. DOI: 10.3892/mmr.2017.6389
- [27] Muñoz, O.; Zamorano, P.; Garcia, O.; Bastías, J. M.; Arsenic, cadmium, mercury, sodium, and potassium concentrations in common foods and estimated daily intake of the population in Valdivia (Chile) using a total diet study. Food Chem. Toxicol. 2017, 109, 1125-1134. DOI: 10.1016/j.fct.2017.03.027
- [28] Barry, D. M.; Kanematsu, H.; Regulations by the Environental Protection Agency in the US. In Corrosion Control and Surface Finishing, 2016, 97-106. Springer, Tokyo. DOI: 10.1007/978-4-431-55957-3_10
- [29] Araujo, L. S.; Tapia, W.; Ortiz, A. V.; Verification of the atomic absorption spectroscopy with graphite furnace analytical method for the quantification of cadmium in cocoa almonds (Theobroma cacao). La Granja, 2020, 31, 56. DOI: 10.17163/lgr.n31.2020.04
- [30] Moinfar, S.; Khayatian, G.; Continuous sample drop flow-based microextraction combined with graphite furnace atomic absorption spectrometry for determination of cadmium. Microchem. J. 2017, 132, 293-298. DOI: 10.1016/j.microc.2017.01.031
- [31] Medvedev, N. S.; Lundovskaya, O. V.; Saprykin, A. I.; Direct analysis of high-purity cadmium by electrothermal vaporization-inductively coupled plasma optical emission spectrometry. Microchem. J., 2019, 145, 751-755. DOI: 10.1016/j.microc.2018.11.014
- [32] He, D.; Zhu, Z.; Miao, X.; Zheng, H.; Li, X.; Belshaw, N. S.; Hu, S.; Determination of trace cadmium in geological samples by membrane desolvation inductively coupled plasma mass spectrometry. Microchem. J. 2019, 148, 561-567. DOI: 10.1016/j.microc.2019.05.042
- [33] Sardinha, A. F.; Silva, L. M.; Ferreira, N. G.; Parameter Optimizations for Square-Wave Anodic Stripping Voltammetry for Cadmium Detection Using Boron-Doped Diamond Electrodes with Different Doping Levels. MRS Adv. 2017, 41, 2223-2228. DOI: 10.1557/adv.2017.94
- [34] Ning, J.; Luo, X.; Wang, F.; Huang, S.; Wang, J.; Liu, D.; Liu, Y.; Synergetic Sensing Effect of Sodium Carboxymethyl Cellulose and Bismuth on Cadmium Detection by Differential Pulse Anodic Stripping Voltammetry. Sensors 2019, 19, 5482. DOI: 10.3390/s19245482
- [35] Thirumalai, M.; Kumar, S. N.; Prabhakaran, D.; Sivaraman, N.; Maheswari, M. A.; Dynamically modified C18 silica monolithic column for the rapid determinations of lead, cadmium and mercury ions by reversed-phase high-performance liquid chromatography. J. Chromatogr. A, 2018, 1569, 62-69. DOI: 10.1016/j.chroma.2018.07.044
- [36] Pan, Q. X.; Wang, J. Y.; Cheng, Y. Z.; Li, W. J.; Wang, X. D.; Determination of Hydrogen Peroxide by Electrochemiluminescence Using a Chitosan-graphene Composite Film Doped Cadmium-Tellurium Quantum Dot Modified Glassy Carbon Electrode. Anal. Lett. 2018, 51, 1373-1383. DOI: 10.1080/00032719.2017.1374964
- [37] Patriarca, M.; Barlow, N.; Cross, A.; Hill, S.; Robson, A.; Taylor, A.; Tyson, J. Atomic spectrometry update: review of advances in the analysis of clinical and biological materials, foods and beverages. J. Anal. Atomic Spectr. 2021, 36, 452-511. DOI: 10.1039/D1JA90007B
- [38] Carter, S.; Fisher, A.; Garcia, R.; Gibson, B.; Marshall, J.; Whiteside, I. Atomic spectrometry update: review of advances in the analysis of metals, chemicals and functional materials. Journal of Analytical Atomic Spectrometry 2016, 31, 2114-2164. DOI: https://doi.org/10.1039/C6JA90044E
- [39] Psillakis, E.; Vortex-assisted liquid-liquid microextraction revisited. TrAC Trends Anal. Chem. 2019, 113, 332-339. DOI: 10.1016/j.trac.2018.11.007
- [40] Narin, I.; Soylak, M.; Enrichment and deterinations of nickel (II), cadmium (II), copper (II), cobalt (II) and lead (II) ions in natural waters, table salts, tea and urine samples as pyrrolydine dithiocarbamate chelates by membrane filtration-flame atomic absorption spectrometry combination. Anal. Chim. Acta 2003, 493, 205-212. DOI: 10.1016/S0003-2670(03)00867-5
- [41] Chen, G. X.; Kim, H. S.; Kim, E. S.; Yoon, J. S.; Compatibilization-like effect of reactive organoclay on the poly (L-lactide)/poly (butylene succinate) blends. Polymer 2005, 46, 11829-11836. DOI: 10.1016/j.polymer.2005.10.056
- [42] Leng, G.; Yin, H.; Li, S.; Chen, Y.; Dan, D.; Speciation analysis of mercury in sediments using vortex-assisted liquid-liquid microextraction coupled to high-performance liquid chromatography-cold vapor atomic fluorescence spectrometry. Talanta 2012, 99, 631-636. DOI: 10.1016/j.talanta.2012.06.051
- [43] Chang, W. Y.; Wang, C. Y.; Jan, J. L.; Lo, Y. S.; Wu, C. H.; Vortex-assisted liquid-liquid microextraction coupled with derivatization for the fluorometric determination of aliphatic amines. J. Chromatography A. 2012, 1248, 41-47. DOI: 10.1016/j.chroma.2012.05.094
- [44] Tuzen, M.; Uluozlu, O. D.; Usta, C.; Soylak, M.; Biosorption of copper (II), lead (II), iron (III) and cobalt (II) on Bacillus sphaericus-loaded Diaion SP-850 resin. Anal. Chim. Acta 2007, 581, 241-246. DOI: 10.1016/j.aca.2006.08.040
- [45] Saracoglu, S.; Soylak, M.; Elci, L.; Enrichment and separation of traces of cadmium, chromium, lead and manganese ions in urine by using magnesium hydroxide coprecipitation method. Trace Elem. Electrolytes 2001, 18, 129-133.
- [46] Soylak, M.; Şahin, U.; Elçi, L.; Spectrophotometric determination of molybdenum in steel samples utilizing selective sorbent extraction on Amberlite XAD-8 resin. Anal. Chim. Acta, 1996, 322, 111-115. DOI: 10.1016/0003-2670(95)00603-6
- [47] Kalfa, O. M.; Yalçınkaya, Ö.; Türker, A. R.; Synthesis of nano B2O3/TiO2 composite material as a new solid phase extractor and its application to preconcentration and separation of cadmium. J. Hazard. Mater. 2009, 166, 455-461. DOI: 10.1016/j.jhazmat.2008.11.112
- [48] Alves, V. N.; Mosquetta, R.; Coelho, N. M. M.; Bianchin, J. N.; Roux, K. C. D. P.; Martendal, E.; Carasek, E.; Determination of cadmium in alcohol fuel using Moringa oleifera seeds as a biosorbent in an on-line system coupled to FAAS Talanta 2010, 80, 1133-1138. DOI: 10.1016/j.talanta.2009.08.040
- [49] Luciano, R. M.; Bedendo, G. C.; Carletto, J. S.; Carasek, E.; Isolation and preconcentration of Cd(II) from environmental samples using polypropylene porous membrane in a hollow fiber renewal liquid membrane extraction procedure and determination by FAAS. J. Hazard. Mater. 2010, 177, 567-572. DOI: 10.1016/j.jhazmat.2009.12.070 S
- [50] Ma, J. J.; Du, X.; Zhang, J. W.; Li, J. C.; Wang, L. Z.; Ultrasound-assisted emulsification-microextraction combined with flame atomic absorption spectrometry for determination of trace cadmium in water samples. Talanta 2009, 80, 980-984. DOI: 10.1016/j.talanta.2009.08.029
- [51] Zhang, J. W.; Wang, Y. K.; Du, X.; Lei, X.; Ma, J. J.; Li, J. C.; Ultrasound-assisted emulsification solidified floating organic drop microextraction for the determination of trace cadmium in water samples by flame atomic absorption spectrometry. J. Braz. Chem. Soc. 2011, 22, 446-453. DOI: 10.1590/S0103-50532011000300006
- [52] Mohamadi, M.; Mostafavi, A.; Flame atomic absorption determination of trace amounts of cadmium after preconcentration using a thiol-containing task-specific ionic liquid. J. AOAC Int. 2011, 94, 959-967. DOI: 10.1093/jaoac/94.3.959
- [53] Chamsaz, M.; Atarodi, A.; Eftekhari, M.; Asadpour, S.; Adibi, M.; Vortex-assisted ionic liquid microextraction coupled to flame atomic absorption spectrometry for determination of trace levels of cadmium in real samples. J. Adv. Res. 2013, 4, 35-41. DOI: 10.1016/j.jare.2011.12.002
- [54] Liu, Z. L.; Liu, Y. J.; Yao, K. L.; Ding, Z. H.; Tao, J.; Wang, X.; Synthesis and magnetic properties of Fe 3 O 4 nanoparticles. J. Mater. Synth. Process. 2002, 10, 83-87. DOI: 10.1023/A:1021231527095
- [55] Audinot, J. N.; Schneider, S.; Yegles, M.; Hallegot, P.; Wennig, R.; Migeon, H. N.; Imaging of arsenic traces in human hair by nano-SIMS 50. Appl. surf. sci. 2004, 231-232, 490-496. DOI: 10.1016/j.apsusc.2004.03.192
- [56] Bozsai, G.; Quality control and assurance in hair analysis. Microchem. J. 1992, 46, 159-166. DOI: 10.1016/0026-265X(92)90033-Y
- [57] Berthod, A.; Ruiz-Angel, M. J.; Carda-Broch, S.; Ionic liquids in separation techniques. J. Chromatogr. A, 2008, 1184, 6-18. DOI: 10.1016/j.chroma.2007.11.109
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-33975131-fccb-43f0-b387-760a084eb4c2