PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Parametric evaluation as a tool for evaluating shell geodesic domes. Modelling the Fuller Dome with ReSa mobile recreational facility panels.

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ewaluacja parametryczna jako narzędzie do oceny powłok geodezyjnych. Modelowanie panelowej, powłokowej, rekreacyjnej kopuły Fullera w grancie ReSa
Języki publikacji
EN
Abstrakty
EN
Mobile structures are one of directions of shaping recreational facilities. In terms of their geometry, geodesic domes and quasi-dome systems deserve special attention. Panel shell domes were the subject of consideration, e.g. Buckminster Fuller and David Geiger, whose patent solutions are referred to in the article. Combining a system of layered self-supporting panels with the geometry of geodesic domes was one of the significant construction and material challenges as part of the ReSa research and the respective implementation project carried out at the Wroclaw University of Technology in 2021-2023 as part of a competition organized by The National Center of Research and Development. Concerning the preliminary analysis, it was necessary to determine the types of dome solutions intended for the implementation of research models. The article presents a detailed analysis of shell geodesic domes with different geometries. The differentiation resulted from the type and the rotation of the base polyhedron relative to the base plane. The main objective of the study was to rank the types of panel geodesic domes in relation to their use in the construction of mobile recreational facilities. The development of 12 virtual dome models made it possible to evaluate their parameters in five main research areas – energy efficiency, environmental impact, support reactions, ergonomics and complexity of prefabrication and assembly process. An extensive evaluation of the parameters in each field, a summary within each domain, and a global evaluation of the shells were performed. The study allowed to develop a hierarchy of panel dome types in relation to the assumed criteria and to check the possibility of using multi-aspect, parametric evaluation. In addition, a detailed study of the geometrical parameters of the shells carried out as part of the indirect tests made it possible to identify the most effective structures in this aspect. This study has proven that parametric evaluation of criteria is a good tool for evaluating shell geodesic domes. This method is developing both in the field of scientific research and in terms of the implementation of domes. It allows for flexible introduction of basic data (here: energy efficiency, environmental impact, support reactions, ergonomics and complexity of prefabrication and assembly process), determination of coefficients and the use of additional weight criteria for individual research fields in relation to the assumed goal.
PL
Struktury mobilne stanowią jeden z kierunków kształtowania obiektów rekreacyjnych na świecie. Pod względem geometrycznym na szczególną uwagę zasługują kopuły geodezyjne i układy quasi-kopułowe. Panelowe kopuły powłokowe były przedmiotem rozważań m.in. Buckminstera Fullera i Davida Geigera, których rozwiązania patentowe przywołano w artykule. Połączenie systemu warstwowych paneli samonośnych z geometrią kopuł geodezyjnych stanowiło jedno z istotnych wyzwań konstrukcyjno-materiałowych w ramach projektu badawczo-wdrożeniowego ReSa realizowanego na Politechnice Wrocławskiej w latach 2021-2023 w ramach konkursu organizowanego przez Narodowe Centrum Badań i Rozwoju. W ramach analiz wstępnych niezbędne było określenie typów rozwiązań kopułowych przeznaczonych do realizacji modeli badawczych. W artykule przedstawiono szczegółową analizę powłokowych kopuł geodezyjnych o zróżnicowanej geometrii. Różnicowanie wynikało z zastosowanego typu oraz obrotu wielościanu bazowego względem płaszczyzny podstawy. Zasadniczym celem badania było hierarchiczne ujęcie typów panelowych kopuł geodezyjnych względem ich zastosowania do budowy mobilnych obiektów rekreacyjnych. Opracowanie 12 wirtualnych modeli kopuł pozwoliło dokonać ewaluacji ich parametrów w 4 zasadniczych polach badania – efektywności energetycznej, wpływu na środowisko, reakcji podporowych oraz ergonomii. Dokonano szerokiej oceny parametrów w każdym z pól, podsumowania w ramach każdej dziedziny oraz globalnej ewaluacji powłok. Badanie pozwoliło na opracowanie hierarchii typów kopuł panelowych względem założonych kryteriów oraz na sprawdzenie możliwości zastosowania wieloaspektowej, parametrycznej ewaluacji. Dodatkowo – szczegółowe opracowanie parametrów geometrycznych powłok przeprowadzone w ramach badań pośrednich pozwoliło na wskazanie najefektywniejszych struktur w tym aspekcie. Podsumowanie badania pozostawia pole do propagacji kolejnych badań w zakresie zastosowania tego narzędzia w aspekcie doboru i oceny kryteriów ewaluacji oraz uzupełnienia oceny względem ich wag.
Rocznik
Strony
163--185
Opis fizyczny
Bibliogr. 34 poz., il., tab.
Twórcy
autor
  • Faculty of Architecture, Wroclaw University of Science and Technology, Wroclaw, Poland
  • Faculty of Architecture, Wroclaw University of Science and Technology, Wroclaw, Poland
  • Faculty of Architecture, Wroclaw University of Science and Technology, Wroclaw, Poland
Bibliografia
  • [1] M.P. Fernández-Serrano and J. Calvo-López, “Projecting stars, triangles and concrete. The Early History of Geodesic Domes, from Walter Bauersfeld to Richard Buckminster Fuller”, Architectura, vol. 47, pp. 93-114, 2016.
  • [2] A.M. Brennan, “Dymaxion House – Ship Shape”, in The Companions to the History of Architecture, vol. 4: Twentieth-Century Architecture. John Wiley & Sons Inc., 2017.
  • [3] W. Bober and P. Stobiecki, “Experimental geodesic dome with a sandwich panels structure”, presented at IHIET-AI2022: 7th International Conference on Human Interaction & Emerging Technologies, Artificial Intelligence & Future Applications, April 21-23, 2022, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.
  • [4] A. Tofiluk, “Problems and challenges of the built environment and the potential of prefabricated architecture”, Archives of Civil Engineering, vol. 69, no. 3, pp. 405-424, 2023, doi: 10.24425/ace.2023.146088.
  • [5] R. Pacheco, J. Ordóñez, and G. Martínez: “Energy efficient design of building: a review”, Renewable and Sustainable Energy Reviews, vol. 16, no. 6, pp. 3559-3573, 2012, doi:10.1016/j.rser.2012.03.045.
  • [6] L. De Boeck, S. Verbeke, A. Audenaert, and L. De Mesmaeker, “Improving the energy performance of residential buildings: a literature review”, Renewable and Sustainable Energy Reviews, vol. 52, pp. 960-975, 2015, doi: 10.1016/j.rser.2015.07.037.
  • [7] Z. Szalay, “Modelling building stock geometry for energy, emission and mass calculations”, Building Research & Information, vol. 36, no. 6, pp. 557-567, 2008, doi: 10.1080/09613210802396429.
  • [8] R. Ourghi, A. Al-Anzi, and M. Krarti, “A simplified analysis method to predict the impact of shape on annual energy use for office buildings”, Energy Conversion and Management, vol. 48, no. 1, pp. 300-305, 2007, doi: 10.1016/j.enconman.2006.04.011.
  • [9] P. Depecker, C. Menezo, J. Virgone, and S. Lepers, “Design of buildings shape and energetic consumption”, Building and Environment, vol. 36, no. 5, pp. 627-635, 2001, doi:10.1016/S0360-1323(00)00044-5.
  • [10] B. D’Amico and F. Pomponi, “A compactness measure of sustainable building forms”, Royal Society Open Science, vol. 6, 2019, doi: 10.1098/rsos.181265.
  • [11] T. Catalina, J. Virgone, and V. Iordache, “Study on the impact of the building form on the energy consumption”, in Proceedings of Building Simulation 2011: 12th Conference of International Building Performance Simulation Association. Sydney, 2011, pp. 1726-1729.
  • [12] A. Mahmoud, “The Influence of Buildings Proportions and Orientations on Energy Demand for Cooling in Hot Arid Climate”, SVU-International Journal of Engineering Sciences and Applications, vol. 3, no. 1, pp. 8-20, 2022, doi: 10.21608/svusrc.2022.119125.1028.
  • [13] T. Fender, Are Geodesic Dome Homes More Energy Efficient and Wind Resistant Because They Resemble a Hemisphere?. Jacksonville University College of Arts and Sciences, 2010.
  • [14] I. Inzhutov, V. Zhadanov, and P. Melnikov, “Energy efficient building for arctic regions”, IOP Conference Series: Materials Science and Engineering, vol. 687, no. 3, art. no. 033013, 2019, doi:10.1088/1757-899X/687/3/033013.
  • [15] Z. Soleimani, J.K. Calautit, and B.R. Hughes, “Computational Analysis of Natural Ventilation Flows in Geodesic Dome Building in Hot Climates”, Computation, vol. 4, no. 3, 2016, doi: 10.3390/computation4030031.
  • [16] S. Wang and Z. Shen, “Impacts of ventilation ratio and vent balance on cooling load and air flow of naturally ventilated attics”, Energies, vol. 5, no. 9, pp. 3218-3232, 2012, doi: 10.3390/en5093218.
  • [17] S. Wang, Z. Shen, and L. Gu, “The impact of roof pitch and ceiling insulation on cooling load of naturally-ventilated attics”, Energies, vol. 5, no. 7, pp. 2178-2196, 2012, doi: 10.3390/en5072178.
  • [18] T.G. Theodosiou and A.M. Papadopoulos, “The impact of thermal bridges on the energy demand of buildings with double brick wall constructions”, Energy and Buildings, vol. 40, no. 11, pp. 2083-2089, 2008, doi: 10.1016/j.enbuild.2008.06.006.
  • [19] A. Alhawari and P. Mukhopadhyaya, “Thermal bridges in building envelopes – An overview of impacts and solutions”, International Review of Applied Sciences and Engineering IRASE, vol. 9, no. 1, pp. 31-40, 2018, doi: 10.1556/1848.2018.9.1.5.
  • [20] H. Erhorn-Kluttig, H. Erhorn, M. Citterio, M. Cocco, D.V. Orshoven, and A. Tilmans, “Thermal Bridges in the EPBD context”, presented at 4th International Symposium on Building and Ductwork Air Tightness 30th AIVC Conference “Trends in High Performance Buildings. . . ”, October 1-2, 2009, Berlin, Germany.
  • [21] H. Erhorn-Kluttig and H. Erhorn, “Impact of thermal bridges on the energy performance of buildings”, Information paper P148 of the EPBD Buildings Platform, 2009.
  • [22] SDSN Secretariat, Getting Started with the Sustainable Development Goals. A Guide for Stakeholders. 2015.
  • [23] European Commision, “Questions and Answers on the Renovation Wave”. Available: https://ec.europa.eu/commission/presscorner/detail/en/qanda_20_1836. [Accessed: 23.08.2022].
  • [24] H. Dos Santos Gervasio and S. Dimova, Model for Life Cycle Assessment (LCA) of buildings. EUR 29123 EN, Publications Office of the European Union, 2018, doi: 10.2760/10016.
  • [25] EN 15804:2012+A1:2013 Sustainability of construction works – Environmental product declarations – Core rules for the product category of construction products. CEN, Brussels, 2013.
  • [26] N. Dodd, M. Cordella, M. Traverso, and S. Donatello, Level(s) – “A common EU framework of core sustainability indicators for office and residential buildings, Parts 1 and 2: Introduction to Level(s) and how it works” (Draft Beta v1.0). Publications Office of the European Union, Luxembourg, 2017, doi: 10.2760/827838.
  • [27] European Commission, COM/2021/802 final, Proposal for a Directive of the European Parliament and of the Council on the energy performance of buildings (recast). Brussels, 2021.
  • [28] THERM Finite Element Simulator, ver. 7.8.16, Regents of the University of California.
  • [29] PN-EN 12831-1:2017-08 Standard – Key Changes in the Methodology of Building Design Heat Load Calculations.
  • [30] PN-EN ISO 13789:2017-10 Cieplne właściwości użytkowe budynków – Współczynniki przenoszenia ciepła przez przenikanie i wentylację – Metoda obliczania.
  • [31] L. Laiblova, J. Pesta, A. Kumar, P. Hajek, C. Fiala, T. Vlach, and V. Kocí, “Environmental impact of textile reinforced concrete facades compared to conventional solutions – LCA case study”, Materials, vol. 12, no. 19, art. no. 3194, 2019, doi: 10.3390/ma12193194.
  • [32] J. Onyszkiewicz and K. Sadowski, “Proposals for the revitalization of prefabricated building facades in terms of the principles of sustainable development and social participation”, Journal of Building Engineering, vol. 46, art. no. 103713, 2022, doi: 10.1016/j.jobe.2021.103713.
  • [33] https://www.oneclicklca.com. [Accessed: 01.09.2022].
  • [34] R. Kontrimovicius, et al., “The initial prototype BIM system for the optimization of integrated construction processes”, Archives of Civil Engineering, vol. 68, no. 3, pp. 617-631, 2022, doi: 10.24425/ace.2022.141906.
Identyfikator YADDA
bwmeta1.element.baztech-33970069-95a5-48bf-9b20-c3bcd87d14a1