PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A scalar-geometric approach for the probable estimation of the reserve of some Pb-Zn deposits in Ameri, southeastern Nigeria

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Cretaceous sedimentary sequence of the Asu River Group in Ameri, southeastern Nigeria play host to lead-zinc ore deposits in irregular mineralized veins of non-uniform geometry. Two deposits (designated DEPOSIT A and DEPOSIT B) were economically assessed using an integrated approach. This was performed by employing a geometry-based classical scheme involving the mathematical relationship between the three cardinal variables of ore reserve estimation namely: surface area, thickness and density. Firstly, detailed and extensive geological mapping was carried out to establish the geological attribute of the mineral deposits. Since reserve estimation extends beyond exposed faces, spontaneous potential traverse, vertical electrical sounding and horizontal profiling, being orthogonal to the trend of the enclosing veins were used to characterize the existing sub-surface stratification and create forward models that revealed the concealed ore geometry (limiting depth, lateral extents and thickness variations). Subsequent to delineation, the depth to the top of the target ore lodes was obtained by implementing the Peter's half slope technique on self-potential curves. Thickness values of the ore bodies of interest were applied in three numerical classical integration techniques, i.e. Trapezoidal, Simpson's and Simpson's third-eight rule, for volume estimation. To overcome the non-uniqueness problem of DC resistivity data interpretation, the available drilling data was applied. Samples retrieved from each lode were subjected to mass and volume analysis using the CS200 electronic balance and water displacement technique, to determine the average density of each lode. Results from 2D subsurface resistivity sections showed the lead-zinc deposits as zones of low resistivity in a background of high resistivity. The 1D stratigraphic models reveal a mean thickness estimate of 11.85 m and 10.50 m for DEPOSITs' A and B, respectively. Sample densities correlate well with the average density of pure galena. Applying the scalar-geometric rule, a combined estimate of 10,778.95tonnes was obtained, representing a relatively economically viable quantity worthy of medium scale extraction.
Rocznik
Strony
208--225
Opis fizyczny
Bibliogr. 40 poz.
Twórcy
  • Applied Geophysics Unit, Department of Geology, University of Nigeria, Nsukka, 410001, Nigeria
  • Applied Geophysics Unit, Department of Geology, University of Nigeria, Nsukka, 410001, Nigeria
  • Applied Geophysics Unit, Department of Geology, University of Nigeria, Nsukka, 410001, Nigeria
Bibliografia
  • 1. Adegoke, J. A., & Layade, G. O. (2014). Variation of structural index of Peter's half-slope in determining magnetic source-depth. Archives of Physics Research, 5(2), 23-31.
  • 2. Afolabi, O., Olorunfemi, M. O., Olagunju, A. O., & Afolayan, J. F. (2004). Resource quantification of a kaolin deposit using the electrical resistivity method: Case study from Ikerre-Ekiti, southwest, Nigeria. Ife Journal of Science, 6(1), 35-40.
  • 3. Akande, S. O., & Mucke, A. (1989). Mineralogy, textural and paragenetic studies of the lead-zinc-copper mineralization, Lower Benue Trough and their genetic implications. Journal of African Earth Sciences, 9(1), 23-29.
  • 4. Etim, O. N., Louis, P., & Maurin, J. C. (1988). Interpretation of electrical soundings on the Abakaliki Lead-Zinc and barite prospects, S.E. Nigeria: Geological and genetic implications. Journal of African Earth Sciences, 7(5), 743-747.
  • 5. Ezepue, M. C. (1984). The geologic setting of lead-zinc deposits at Ishiagu, Southeastern Nigeria. Journal of African Earth Sciences, 2(2), 97-101.
  • 6. Farrington, J. L. (1952). A preliminary description of the Nigerian lead zinc field. Economic Geology, 47(6), 583-608.
  • 7. Fatoye, F. B., Ibitomi, M. A., & Omada, J. I. (2014). Lead-zinc-barytes mineralization in the Benue Trough Nigeria: Occurrence and economic prospectivity. Advances in Applied Science Research, 5(2), 86-92.
  • 8. Genik, G. J. (1993). Petroleum geology of cretaceous-tertiary Rift basins in Niger, Chad and Central African Republic. American Association of Petroleum Geologists Bulletin, 77(8), 1405-1434.
  • 9. Grant, N. K. (1971). A compilation of radiometric ages from Nigeria. Journal of Mining and Geology, 6, 37-54.
  • 10. Hoque, M. (1984). Pyroclastics from the lower Benue Trough of Nigeria and their tectonic implications. Journal of African Earth Sciences, 2(1), 351-358.
  • 11. Leach, D. L., Bradley, D. C., Huston, D., Pisarevsky, S. A., Taylor, R. D., & Gardoll, S. J. (2010). Sediment-hosted lead-zinc deposits in earth history. Economic Geology, 105(3), 593-625.
  • 12. Loke, M. H., & Barker, R. D. (1996). Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophysical Prospecting, 44(1), 131-152.
  • 13. Lowrie, W. (2007). Fundamentals of geophysics (1st ed.). Cambridge: University Press.
  • 14. Maurin, J. C. (1986). Analyse de zones decrochantes dans le fosse de la Benoue (Nigeria) et systmatiques U-Pb et Pb-Zn associees. Ph.D TheseMontpellier: Universite de Montpellier.
  • 15. Maurin, J. C., Benkhelil, J., & Robineau, B. (1986). Fault rocks of the Kaltungo lineament (NE Nigeria) and their relation with Benue Trough tectonic. Journal of the Geological Society, 143(4), 587-599.
  • 16. Maurin, J., & Lancelot, J. R. (1987). Origines des mineralisations de Pb Zn de la Valle de Benue Nigeria la composition en Pb des galena et de Mineral. Mineralium Deposita, 2(2), 99-108.
  • 17. Monsuro, O. O., Bayewu, O. O., & Oloruntola, M. O. (2011). Application of geophysical and geostatistical method in the estimation of clay deposit reserve of Idofe and environs, southwestern Nigeria. Mineral Wealth, 160(1), 41-48.
  • 18. Mostafijul, M. K., & Farhad, M. H. (2013). Volumetric estimation of coal resources in seam VI for require backfill materials of Barapukuria coal mine, Dinajpur, Bangladesh. Earth Science, 2(1), 113-119.
  • 19. Murat, R. C. (1970). Stratigraphy and paleogeography of the cretaceous and lower tertiary in southern Nigeria. In T. T. Dessauvagie, & A. J. Whiteman (Eds.). African geology (pp. 131-158). Ibadan: University Press.
  • 20. Nwachukwu, S. O. (1972). The tectonic evolution of the southern portion of the Benue Trough. Geology Magazine, 109(5), 411-419.
  • 21. Nwachukwu, S. O. (1975). Temperature of formation of vein minerals in the southern portion of the Benue Trough, Nigeria. Journal of Geology and Mining, 11, 45-55.
  • 22. Obasi, E., Gundu, D. T., Ashwe, A., & Akindele, M. (2015). Determination of work index of Enyigba lead ore, Ebonyi state, south-East Nigeria. Studies in Engineering and Technology, 2(1), 103-110.
  • 23. Obi, D. A., Ekwueme, B. N., & Akpeke, G. B. (2014). Reserve estimation of barite deposits using geological and geophysical investigations in Cross-River state, south-eastern Nigeria. Journal of Environment and Earth Science, 4(10), 18-38.
  • 24. Odeyemi, I. B., Oloruniwo, M. A., & Folami, S. L. (1997). Geological and geophysical characteristics of Ikpeshi marble deposit, Igarra area, southwestern Nigeria. Journal of Geology and Mining, 33, 63-79.
  • 25. Offodile, M. E. (1976). A review of the geology of the cretaceous of the Benue valley. In C. A. Kogbe (Ed.). Geology of Nigeria (pp. 201-245). Lagos: Elizabethan Publication Company.
  • 26. Offodile, M. E., & Reyment, R. A. (1976). Stratigraphy of the Keana-Awe area of the middle Benue region of Nigeria. Vol. 7. Bulletin of the Geological Institute of the University of Uppsalla.
  • 27. Oha, I. A., Mosto, K. M., & Dada, S. S. (2017). Contrasting styles of lead-zinc-barium mineralization in the lower Benue Trough, southeastern Nigeria. Earth Sciences Research Journal, 21(1), 7-16.
  • 28. Ojoh, K. A. (1992). The southern part of the Benue Trough (Nigeria) Cretaceous stratigraphy, basin analysis, paleo-oceanography and geodynamic evolution in the Equatorial Domain of the South Atlantic. Nigerian Association of Petroleum Explorationists Buletin, 7, 131-152.
  • 29. Olade, M. A. (1976). On the genesis of lead-zinc deposits in Nigeria Benue rift (aulacogen) a re-interpretation. Journal of Geology and Mining, 13, 20-27.
  • 30. Olade, M. A., & Morton, R. D. (1985). Origin of lead-zinc mineralization in the southern Benue Trough, Nigeria: Fluid inclusion and trace element studies. Mineralium Deposita, 20(2), 76-80.
  • 31. Onimisi, M., Abaa, S. I., Obaje, N. G., & Sule, V. I. (2015). A preliminary estimate of the reserve of the marble deposit in Itobe area, central Nigeria. Journal of Geology and Geophysics, 4(1), 1-11.
  • 32. Orajaka, I. P. (1965). Geology of Enyigba, Ameri and Ameka lead-zinc mines. The Journal of Geology, 3, 49-59.
  • 33. Ramazi, H., & Mostafaie, K. (2013). Application of integrated geoelectrical methods in Marand (Iran) manganese deposit exploration. Arabian Journal of Geosciences, 6(8), 2961-2970.
  • 34. Reyment, R. A. (1965). Aspect of the geology of Nigeria (1st ed.). Ibadan: University Press.
  • 35. Rolo, R. M., Radtke, R., & Costa, J. F. (2017). Signed distance function implicit geologic modeling. International Engineering Journal, 70(2), 221-229.
  • 36. Simpson, A. (1954). The Nigerian Coalfield: The geology of parts of Owerri and Benue provinces. Bulletin - Geological Survey of Nigeria, 24, 1-85.
  • 37. Sinclair, A. J., & Blackwell, G. H. (2002). Applied mineral inventory estimation (1st ed.). Cambridge: University Press.
  • 38. Soulaimani, S., Manar, A., Chakiri, S., Alloiza, M., Ezzayani, J., El-Hmidi, F., et al. (2017). 3D modeling and reserve estimation using gravity data of Hajjar central ore body (Marrakech region, Morocco). Bulletin de l'Institut Scientifique, 39, 25-34.
  • 39. Tercan, A. E., Unver, B., Hindistan, M. A., Ertunc, G., Atalay, F., Unal, S., et al. (2012). Seam modeling and resource estimation in the coalfields of western Anatolia. International Journal of Coal Geology, 112, 94-106.
  • 40. Wang, Q., Deng, J., Liu, H., Yang, L., Wan, L., & Zhang, R. (2010). Fractal models for ore reserve estimation. Ore Geology Reviews, 37, 2-14.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-33968da0-5af2-4568-b1c5-95d0c3896bad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.