PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Holocene tufa in the Slovak Karst : facies, sedimentary environments and depositional history

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Several tufa complexes are known in the Slovak Karst which is a typical karst area of a temperate climate. This area is built of Mesozoic carbonates, mainly Triassic in age. The karst systems drain carbonate plateaux and lead water to resurgences located in valleys which are up to 300 m deep. Below the resurgences there are Holocene fossil tufa deposits that exceed 12 m in thickness. The tufas include stromatolite, moss, phytoclastic, oncoidal, and intraclastic facies. Extensive barrages which once dammed the upper reaches of the streams were formed in narrow valleys. They are composed predominantly of moss facies and stromatolites, with subordinate oncoidal and phytoclastic facies. Phytoclastic, oncoidal and intraclastic facies are dominant in dammed segments of streams, and include gastropod shells and charcoal fragments. Some small moss cushions are also developed. Barrages and dammed areas formed in a longitudinal fluvial depositional system. Conversely, below resurgences located on plateau slopes tufas of a perched springline depositional system were formed. These comprise deposits of prograding cascades constructed by moss, phytoclastic and stromatolitic facies. Presently, the tufas analysed are inactive. They stopped growing in the Late Holocene time, after which there was abrupt incision of the streams. This caused downcutting into Holocene tufas, in some places reaching Mesozoic bedrock. At present tufa is being precipitated from streams in all the sites studied.
Rocznik
Strony
769–--788
Opis fizyczny
Bibliogr. 118 poz., rys., tab., wykr.
Twórcy
  • Institute of Geological Sciences, Jagiellonian University, Oleandry 2a, 30-063 Kraków, Poland
autor
  • Institute of Geological Sciences, Polish Academy of Sciences, Twarda 51/55, 00-818 Warszawa, Poland
  • Institute of Geological Sciences, Jagiellonian University, Oleandry 2a, 30-063 Kraków, Poland
autor
  • Institute of Geological Sciences Jagiellonian University, Oleandry 2a, 30-063 Kraków, Poland
Bibliografia
  • 1. Alexandrowicz W.P. (2004) Molluscan assemblages of Late Glacial and Holocene calcareous tufas in southern Poland. Folia Quaternaria, 75: 3-309.
  • 2. Alexandrowicz W.P. (2012) Assemblages of molluscs from Sulisławice (Małopolska Upland, southern Poland) and their significance for interpretation of depositional conditions of calcareous tufas in small water bodies. Annales Societatis Geologorum Poloniae, 82: 161-176.
  • 3. Andrews J.E. (2006) Palaeoclimatic record from stable isotopes in riverine tufas: synthesis and review. Earth-Science Reviews, 75: 85-104.
  • 4. Andrews J.E., Brasier A.T. (2005) Seasonal records of climaiic change in annually laminated tufas: short review and future prospects. Journal of Quaternary Science, 20: 411-421.
  • 5. Anzalone E., Ferreri V., Sprovieri M., D'Argenio B. (2007) Travertines as hydrologic archives: the case of the Pontecagnano deposits (southern Italy). Advances in Water Resources, 30: 2159-2175.
  • 6. Arenas C., Vázquez-Urbez M., Auqué L., Sancho C., Osácar C., Pardo G. (2013) Sedimentology and depositional architecture of tufas deposited in stepped fluvial systems of changing slope: lessons from the Quaternary Anamaza valley (Iberian Range, Spain). Sedimentology, 61 (in press) doi: 10.1111/sed.12053.
  • 7. Arenas-Abad C., Vázquez-Urbez M., Pardo-Tirapu G., Sancho- Marcén C. (2010) Fluvial and associated carbonate deposits. Developments in Sedimentology, 61: 133-175.
  • 8. Baker A., Simms M.J. (1998) Active deposition of calcareous tufa in Wessex, UK, and its implications for the “late-HoIocene tufa decline”. Holocene, 8: 359-365.
  • 9. Bánesz L. (1994) Osídlenie územia v praveku. In: Slovenský Kras (eds. M. Rozložnik and A. Karasová): 259-273. Osveta, Martin.
  • 10. Bárta J. (1994) Jaskyne a clovek. In: Slovenský Kras (eds. M. Rozložnik and A. Karasová): 245-255. Osveta, Martin.
  • 11. Bella P. (2003) Morphology and genesis of the Gombasecká Cave (in Slovak with English summary). Slovenský Kras, 41: 47-68.
  • 12. Bíl M., Kubeèek J. (2012) Piping in loess-like and loess-derived soils: case study of Halenkovice site, Czech RepubIic. Annales Societatis Geologorum Poloniae, 82: 45-50.
  • 13. Blikra L., Nemec W. (1998) Postglacial colluvium in western Norway: depositional processes, facies and palaeoclimatic record. Sedimentology, 45: 909-959.
  • 14. Brock F., Higham T., Ditchfield P., Bronk Ramsey P. (2010) Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon, 52: 103-112
  • 15. Bronk Ramsey C. (2009) Bayesian analysis of radiocarbon dates. Radiocarbon, 51: 337-360.
  • 16. Capezzuoli E., Gandin A., Sandrelli F. (2010) Calcareous tufaas indicators of climatic variability: a case study from southern Tuscany (Italy). Geological Society Special Publications, 336: 263-281.
  • 17. Carthew K.D., Drysdale R.N. (2003) Late Holocene fluvial change in a tufa-depositing stream: Davys Creeek, New South Wales, Australia. Australian Geographer, 34: 123-139.
  • 18. Carthew K.D., Taylor M.P., Drysdale R.N. (2003) Are current models of tufa sedimentary environments applicable to tropical systems? A case study from Gregory River. Sedimentary Geology, 162: 199-218.
  • 19. Czernik J., Goslar T. (2001) Preparation of graphite targets in the Gliwice Radiocarbon Laboratory for AMS (super 14) C dating. Radiocarbon, 43: 283-291.
  • 20. Drysdale R.N. (1999) The sedimentological significance of hydropsychid caddis-fly larvae (order: Trichoptera) in a travertine-depositing stream: Louie Creek, northwest Queensland, Australia. Journal of Sedimentary Research, 69: 145-150.
  • 21. Drysdale R., Gillieson D. (1997) Micro-erosion meter measurements of travertine deposition rates: a case study from Louie Creek, Northwest Queensland, Australia. Earth Surface Processes and Landforms, 22: 1037-1051
  • 22. Emeis K.-C., Richnow H.-H., Kempe S. (1987) Travertine formation in Plitvice National Park, Yugoslavia: chemical versus biological control. Sedimentology, 34: 595-609.
  • 23. Florsheim J.L., Ustin S.L., Tang Y., Di B., Huang C., Qiao X., Peng H., Zhang M., Cai Y. (2013) Basin-scale and travertine dam-scale controls on fluvial travertine, Jiuzhaigou, southwestern China. Geomorphology, 180-181: 267-280.
  • 24. Ford D.C., Williams P.W. (2007) Karst Hydrogeology and Geomorphology. Wiley, Chichester.
  • 25. Ford T.D., Pedley H.M. (1996) A review of tufa and travertine deposits of the world. Earth-Sciences Reviews, 41: 117-175.
  • 26. Gandin A., Capezzuoli E. (2008) Travertine versus calcareous tufa: distinctive petrologic features and stable isotopes signatures. Italian Journal of Quaternary Sciences, 21: 125-136.
  • 27. García-García F., Pla-Pueyo S., Nieto L.M., Viseras, C. (2013) Sedimentology of geomorphologically controlled tufas in a valley in southern Spain. Facies (in print) doi: 10.1007/s 10347-013-0361 -5
  • 28. Garnett E.R., Andrews J.E., Preece R.C., Dennis P.F. (2004) Climatic change recorded by stable isotopes and trace elements in a British Holocene tufa. Journal of Quaternary Science, 19: 251-256.
  • 29. Glover C., Robertson A.F.H. (2003) Origin of tufa (cool water carbonate) and reIated tertaces in the Antalya area, SW Turkey. Geological Journal, 38: 329-358.
  • 30. Golubić S. (1969) Cyclic and noncyclic mechanisms in the formation of travertine. Internationale Vereinigung für Theoretische und Angewandte Limnologie, 17: 956-961.
  • 31. Goodfriend G.A., Stipp J.J. (1983) Limestone and the probIem of radiocarbon dating of land-snail shell carbonate. Geology, 11: 575-577.
  • 32. Goslar T., Czermik J., Goslar E. (2004) Low-energy 14C AMS in Poznań Radiocarbon Laboratory. Nuclear Instruments and Methods B: 223-224: 5-11.
  • 33. Goudie A.S., Viles H.A., Pentecost A. (1993) The late-HoIocene tufa decline in Europe. Holocene, 3: 181-186.
  • 34. Gradziński M. (2008) Origin of a unique tree-mould type cave in travertine based on examples from the village of Lúcky (Liptov, Slovakia). Slovenský Kras, 46: 325-331.
  • 35. Gradziński M. (2010) Factors controlling growth of modern tufa: results of a field ex periment. Geological Society Special Publications, 336: 143-191.
  • 36. Gradziński M., Szulc J., Motyka J., Stworzewicz, E., Tyc A. (2001) Travertine mound and cave in a village of Laski, Silesian-Cracow Upland. Annales Societatis Geologorum Poloniae, 71:115-123.
  • 37. Gradziński M., Chmiel M.J., Lewandowska A., Michalska- Kasperkiewicz B. (2010) Siliciclastic microstromatolites in a sandstone cave: role of trapping and binding of detrital particles in formation of cave deposits. Annales Societatis Geologorum Poloniae, 80: 303-314.
  • 38. Harris P.M., Ellis, J., Purkis S.J. (2013) Assessing the extent carbonate deposition in early rift settings. AAPG Bulletin, 97:17-60.
  • 39. Haviarová D., Flaková R., Seman M., Gaálová B., Ženišová Z. (2012) Chemical composition and microbiological properties of karst waters of Silica-Gombasek cave system (Silická Plateau, Slovak Karst) (in Slovak with English summary). Aragonit, 17: 3-14.
  • 40. Hercman H., Pawlak J. (2012) MOD-AGE: An age-depth model construction algorithm. Quaternary Geochronology, 12: 1-10.
  • 41. Hill C., Forti P. (1997) Cave Minerals of the World. National Speleological Society. Huntsville.
  • 42. Hochstetter F. (1856) Über die geologische Beschaffenheit der Umgegend von Edelény bei Miskolcz in Ungarn. Jahrbuch der Kaiserlich-Königlischen Geologischen Reichsanstalt, 7: 692-705.
  • 43. Ihlenfeld Ch., Norman M.D., Gagan M.K., Drysdale R.N., Maas R., Webb J. (2003) Climatic significance of sea sonal trace element and stable isotope variations in a modern freshwater tufa. Geochimica et Cosmochimica Acta, 67: 2241-2357.
  • 44. Irion G., Müller G. (1968) Mineralogy, petrology and chemical composition of some calcareous tufa from the Schwäbische Alb, Germany. In: Carbonate Sedimentology in Central Europe (eds. G. Müller and G.M. Friedman): 157-171. Springer, New York.
  • 45. Jakál J., Bella P. (2008) Water - creative agent of karst and caves. In: Caves of the World Heritage in Slovakia (eds. J. Jakál and P Bella): 25-36. State Nature Conservancy of the Slovak Republic, Liptovský Mikuláš.
  • 46. Janssen A., Swennen R., Podoor N., Keppen E. (1999) Biological and diagenetic influence in Recent and fossil tufa deposits from Belgium. Sedimentary Geology, 126: 75-95.
  • 47. Jones B., Renaut R.W. (2010) Calcareous spring deposits in continental settings. Developments in Sedimentology, 61: 177-224.
  • 48. Keppel M.N., Clarke J.D.A., Halihan T., Love A.J., Werner A.D. Mound springs in the arid Lake Eyre South region of South Australia: A new depositional tufa model and its controls. Sedimentary Geology, 240: 55-70.
  • 49. Kilík J. (2008) Calcareous tufa in Slovak Karst (in Slovak with English summary). Naturae Tutela, 12: 177-184.
  • 50. Kormos T. (1912) Beiträge zur Kenntnis der pleistozänen Molluskenfauna des Mittelkarpathen-Gebietes. Jahrbuch der Königlisch ungarischen geologischen Reichsanstalt, [for 1910]: 326-340.
  • 51. Kovanda J. (1971) Quaternary limestones of Czechoslovakia (in Czech with English summary). Sbornik Geologických Věd, Antropozoikum, 7A: 7-256.
  • 52. Krąpiec M., Walanus A. (2011) Application of the triple-photomultiplier liquid spectrometer Hidex 300SL in radiocarbon dating. Radiocarbon, 53: 543-550.
  • 53. Krippel E. (1957) Ein Beitrag zur Entwicklung des Waldes im Gebiete des südslowakischen Karstes (in Slovak with German summary). Biológia, 12: 884-893.
  • 54. Limondin-Lozouet N., Preece R.C. (2004) Molluscan successions from the HoIocene tufa of St Germainile-Vasson, Normandy (France) and their biogeographical significance. Journal of Quaternary Science, 19: 55-71.
  • 55. Ložek V. (1955) Mollusken des tschechoslovakischen Quartärs (in Czech with German summary). Rozpravy Ústředního Ústavu Geologického Československé Akademie Ved, 17: 475-495.
  • 56. Ložek V. (1958) Stratigraphie und Weichtiere der holozänen Travertine in Háj bei Turňa (in Czech with German summary). Anthropozoikum, 7: 27-36.
  • 57. Ložek, V., Prošek F. (1956) Über Veränderungen des Landschaftsbildes des Südslowakischen Karstes in der jüngsten geologischen Vergengenheit (in Czech with German summary). Ochrana Přírody, 11: 33-42.
  • 58. Martín-Algarra A., Martín-Martín M., Andreo B., Julia R., González-Gómez C. (2003) Sedi meniary patierns in perched spring travertines near Granada (Spain) as indicators of the palaeohydrological and palaeoclimatological evolution of a karst massif. Sedimentary Geology, 161: 217-228.
  • 59. Mastella L., Rybak-Ostrowska B. (2012) Tectonic control of tufa occurrences in the Polish Synclinorium (Central Western Carpathians, southern Poland). Geological Quarterly, 56 (4): 733-744.
  • 60. Mello J., ed. (1996) Geol ogi cal map of the Slovenský Kras Mts. Ministerstvo Životného Prostredia Slovenskej Republiky. Geologická Služba Slovenskej Republiky, Bratislava.
  • 61. Merz-Preiß M., Riding R. (1999) Cyanobacterial tufa calcification in two freshwater streams: ambient environment, chemical thresholds and biological processes. Sedimentary Geology, 126: 103-124.
  • 62. Meyrick R.A. (2003) Holocene molluscan faunal history and environmental change at Kloster Mühle, Rheinland-Pfalz, western Germany. Journal of Quaternary Science, 18: 121-132.
  • 63. Meyrick R.A., Preece R.C. (2001) Moliuscan successions from two Holocene tufas near Northampton, English Midiands. Journal of Biogeography, 28: 77-93.
  • 64. Moyersons J., Nyssen J., Poesen J., Deckers J., Haile M. (2006) Age and backfill/overfill stratigraphy of two tufa dams, Tigray Highlands, Ethiopia: Evidence for late Pleistocene and Holocene wet conditions. Palaeogeography, Palaeoclimatology, Palaeoecology, 230: 165-181.
  • 65. Němejc F. (1936) The palaeobotanical researches in the travertine deposits of the Slovakian Karst. Bulletin International de l'Académie des Sciences de Bohéme: 1-47.
  • 66. Němejc F. (1944) Výsledky dosavadních výzkumů paleobotanických v kvarteru západního dílu karpatského obloku. Rozpravy II. Třídy České Akademie, 53 (35): 1-47.
  • 67. Ordóňez S., García del Cura M.A. (1983) Recent and Tertiary fluvial carbonates in Central Spain. IAS Special Publication, 6: 485-497.
  • 68. Ordóňez S., González Martín J.A., García del Cura M.A., Pedley H.M. (2005) Temperate and semi-arid tufas in the Pleistocene to Recent fluvial barrage system in the Mediterranean area: the Ruidera Lakes Natural Park (Central Spain). Geomorphology 69: 332-350.
  • 69. Pazdur A., Pazdur M.F., Starkel L., Szulc J. (1988a) Stable isotopes of Holocene tufa in Southern Poland as paleoclimatic indicator. Quaternary Research, 30: 177-189.
  • 70. Pazdur A., Pazdur M.F., Szulc J. (1988b) Radiocarbon dating of Holocene calcareous tufa in southern Poland. Radiocarbon, 30, 133-152.
  • 71. Pedley H.M. (1987) The Flandrian (Quaternary) Caerwys Tufa, North Wales: an ancient barrage tufa deposit. Proceedings of the Yorkshire Geological Society, 46: 141-152.
  • 72. Pedley H.M. (1990) Classification and environmental models of cool freshwater tufas. Sedimentary Geology, 68: 143-154.
  • 73. Pedley M. (1992) Freshwater (phytoherm) reefs: the role of biofilms and their bearing on marine reef cementation. Sedimentary Geology, 79: 255-274.
  • 74. Pedley H.M. (1993) Sedimentology of the late Quaternary barrage tufas in the Wye and Lathkill valleys, north Derbyshire. Proceedings of the Yorkshire Geological Society, 49: 197-206.
  • 75. Pedley M. (2009) Tufas and travertines of the Mediterranean region: a testing ground for freshwater carbonate concepts and developments. Sedimentology, 56: 221-246.
  • 76. Pedley M., Andrews J., Ordóňez S., García del Cura M.A., González Martín J.A., Taylor D. (1996) Does climate control the morphological fabric of freshwater carbonates? A comparative study of Holocene barrage tufas from Spain and Britain. Palaeogeography, Palaeoclimatology, Palaeoecology, 121: 239-257.
  • 77. Pedley M., González Martín J.A., Ordóňez Delgado S., García del Cura A.G. (2003) Sedimentology of Quaternary perched springline and paludal tufas: criteria for recognition, with examples from Guadalajara Province, Spain. Sedimentology, 50: 23-44.
  • 78. Pedley M., Rogerson M., Middleton R. (2009) Freshwaier calcite precipitates from in vitro mesocosm flume experiments: a case for biomediation of tufas. Sedimentology, 56: 511-527.
  • 79. Peňa J.L., Sancho C., Lozano M.V. (2000) Climatic and tectonic significance of Late Pleistocene and Holocene tufa deposition in the Miojares River canyon, Eastern Iberian Range, northeastern Spain. Earth Surface Processes and Landforms, 25: 1403-1417.
  • 80. Pentecost A. (1998) The significance of calcite (travertine) formation by algae in a moss-dominated travertine from Matlock Bath, England. Archiv für Hydrobiologie, 143: 487-509.
  • 81. Pentecost A. (1999) The origin and development of the travertines and associated thermal waiers at Mati ock Baths, Derbyshire. Proceedings of the Geologists'Association, 110: 217-232.
  • 82. Pentecost A. (2005)Travertine. Springer, Berlin.
  • 83. Pentecost A., Viles H. (1994) A review of reassessment of travertine classification. Géographie Physique et Quaternaire, 48: 305-314.
  • 84. Pentecost A., Whitton B.A. (2000) Limestones. In: The Ecology of Cyanobacteria (eds. B.A. Whitton and M. Potts): 257-279. Kluwer, Amsterdam.
  • 85. Pentecost A., Zhang Z. (2001) A review of Chinese travertines. Cave and Karst Science, 28: 15-28.
  • 86. Petrbok J. (1937) Mekkýši travertinů slovenského Krasu, Gánovců s okolím, Spiše a Ružbachů. Rozpravy II. Třídy České Akademie, 46 (5): 1-16.
  • 87. Pigati J.S., Rech J.A., Nekola J.C. (2010) Radiocarbon dating of small terresirial gasiropod shells in North Ameri ca. Quaternary Geochronology, 5: 519-532.
  • 88. Preece R.C., Bridgland D.R. (1999) Holywell Coombe, Folkestone: A 13,000 year history of an English Chalkland Valley. Quaternary Science Reviews, 18: 1075-1125.
  • 89. Preece R.C., Day S.P. (1994) Comparison of Post-glacial molluscan and vegetational successions from a radiocarbon-dated tufa sequence in Oxfordshire. Journal of Biogeography, 21: 463-478.
  • 90. Reimer P.J., Baillie M.G.L., Bard E., Bayliss A., Beck J.W., Blackwell P.G., Bronk Ramsey C., Buck C.E., Burr G.S., Edwards R.L., Friedrich M., Grootes P.M., Guilderson T.P., Hajdas I., Heaton T.J., Hogg A.G., Hughen K.A., Kaiser K.F., Kromer B., McCormac F.G., Manning S.W., Reimer R.W., Richards D.A., Southon J.R., Talamo S., Turney C.S.M., van der Plicht J., Weyhenmeyer C.E. (2009). IntCal09 and Marine09 radiocarbon age calibration curves, 0-50,000 years cal BP. Radiocarbon, 51: 1111-1150.
  • 91. Sanders D., Wertl W. (2011) Spring-associated limestones of the Eastern Alps: overview of facies, deposystems, minerals, and biota. Facies, 57: 395-316.
  • 92. Scott A.C. (2010) Charcoal recognition, taphonomy and uses in palaeoenvironmental analysis. Palaeogeography, Palaeoclimat- ology, Palaeoecology, 291: 11-39.
  • 93. Shiraishi F., Reimer A., Bissett A., Beer D. de, Arp G. (2008) Microbial effects on biofilm calcification, ambient water chemistry and stable isotope records in a highly supersaturated setting (Westerhöfer Bach, Germany). Palaeogeography, Palaeoclimatology, Palaeoecology, 262: 91-106.
  • 94. Soják M. (2007) Osídlenie blízkeho okolia Moldavy nad Bodvou. In: Moldavská jaskyňa v zrkadle dejín (eds. M. Soják and M. Terray): 50-72. Mestský úrad v Moldave nad Bodvou, Moldava nad Bodvou.
  • 95. Soják M. (2008) Cave settlement. In: Caves of the World Heritage in Slovakia (eds. J. Jakál and P. Bella): 109-122. State Nature Conservancy of the Slovak Republic, Liptovský Mikuláš.
  • 96. Soligo M., Tuccimei P., Barberi R., Delitala M.C., Miccadei E., Tadeucci A. (2002) U/Th datl ng of freshwater travertine from Middle Velino Valley (Central Italy): paleoclimatic and geologic implications. Palaegeography, Palaeoclimatology, Palaeoecology, 184: 147-161.
  • 97. Steidtmann E. (1936) Travertine-depositing waters near Lexington, Virginia. Journal of Geology, 44: 193-200.
  • 98. Stuiver M., Polach H.A. (1977) Discussion. Reporting of 14C data. Radiocarbon, 19: 355-363.
  • 99. Sürmelihindli G., Passchier C.W., Spötl Ch., Kessner P., Bestmanns M., Jacob D., Baykan O.N. (2013) Lami nated carbonate deposits in Roman aqueducts: Origin, processes and implications. Sedimentology, 60: 961-982.
  • 100. Szulc J. (1983) Genesis and classification of calcareous sinter deposits (in Polish with English summary). Przegląd Geologiczny, 31: 231-237.
  • 101. Szulc J. (1984) Sedymentacja czwartorzędowych martwic wapiennych Polski południowej. PhD thesis. Polska Akademia Nauk, Instytut Nauk Geologicznych.
  • 102. Šemnički P., Previšté A., Ivkivić M., Čmrlec K., Mihajlevic Z. Tufa barriers from a caddisfly's point of view. Streams or lake outlets? International Review of Hydrobiology, 97:465-484.
  • 103. Taylor D.M., Pedley H.M., Davies P., Wright M.W. (1998) Pollen and mollusc records for environmental change in central Spain during the mid- and late Holocene. Holocene, 8: 605-612.
  • 104. Turner E.C., Jones B. (2005) Microscopic calcite dendrites in cold-water tufa: implications for nucleation of micrite and cement. Sedimentology, 52: 1043-1066.
  • 105. Vázquez-Urbez M., Arenas C., Pardo G. (2012) A sedimentary facies model for stepped, fluvial tufa system in the Iberian Range (Spain): the Quaternary Piedra and Mesa valleys. Sedimentology, 61: 502-526.
  • 106. Vázquez-Urbez M., Arenas C., Padro G., Pérez-Rivarés S. (2013) The effect of drainage reorganization and climate on the sedimentologic evolution of intermontane lake systems: The final fill stage of the Tertiary Ebro Basin (Spain). Journal of Sedimentary Research, 83: 562-590.
  • 107. Vermoere M., Degryse P., Vanhecke L., Muchez Ph., Palulissen E., Smets E., Waelkens M. (1999) Pollen analysis of two travertine sections in Basköy (southwestern Turekey): implications for environmental conditions during the early Holocene. Review of Palaeobotany and Palynology, 105: 93-110.
  • 108. Verrecchia E.P., Freytet P., Julien J., Baltzer F. (1997) The unusual hydrodynamic behaviour of freshwater oncolites. Sedimentary Geology, 113: 225-243.
  • 109. Viles H.A., Naylor L.A., Carter N.E.A., Chaput D. (2008) Biogeomorphological disturbance regimes: progress in linking ecological and geomorphological systems. Earth Surface Proceses and Landforms, 33: 1419-1435.
  • 110. Viles H.A., Pentecost A. (2007) Tufa and travertine. In: Geochemical Sediments & Landscapes (eds. D.J. Nash and S.J. McLaren): 173-199. Blackwell, Malden.
  • 111. Viles H.A., Taylor M.P., Nicoll K., Neumann S. (2007) Facies evidence of hydroclimatic regime shifts in tufa depositional sequences from the arid Naukuft Montains, Namibia. Sedimentary Geology, 195: 39-53.
  • 112. Violante C., Ferreri V., D'Argenio B., Golubic S. (1994) Quaternary travertines at Rocchetta a Volturno (Insernia, Central Italy). Facies analysis and sedimentary model of an organogenic carbonate system. In: Pre Meetlng Fieldtrip Guidebook, 15th Regional Meeting of International Association of Sedimentologists, Ischia (eds. G. Carannante and R. Tonielli): 3-23. International Association of Sedimentologists.
  • 113. Vitális S. (1909) Die geologischen Verhältnisse der Umgebung des Bodva und Tornabaches. Jahresbericht der Könglisch Ungarischen Geologischen Reichsanstalt, [for 1907]: 50-66.
  • 114. Walker D. (2007) Holocene sediments of Lake Barrine, north-east Australia, and their implications for the history of lake and catchment environments. Palaeogeography, Palaeoclimatology, Palaeoecology, 251 : 57-82.
  • 115. Weijermars R., Mulder-Blanken C.W., Wiegers J. (1986) Growth rate observation from the moss-built Checa travertine terrace, central Spain. Geological Magazine, 123: 279-286.
  • 116. Whitlock C., Millspaugh S.H. (1996) Testing the assumption of fire history studies: An examination of modern charcoal accumulation in YelIowstone National Park, USA. Holocene, 6: 7-15.
  • 117. Zambo L., Ford D.C. (1997) Limestone dissolution processes in Beke Doline Aggtelek National Park, Hungary. Earth Surface Processes and Landforms, 22: 531-543.
  • 118. Žák K., Ložek V., Kadlec J., Hladíkova J., Cílek V. (2002) Climate-induced changes in Holocene calcareous tufa formations, Bohemian Karts, Czech Republic. Quaternary International, 91: 137-152.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-33942f01-2dc1-41e1-ba8b-8acc318e37a5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.