PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Materials used in the combat aviation construction

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, an attempt was made to apply laser surface technology for enhancement of the properties and strengthening the material with addition of ceramic phases in the form of silicon and tungsten carbide particles, leading to a remarkable increase in hardness. Thanks to rapid cooling caused by heat being transferred to the cold substrate, an advantageous, fine-grained structure develops, showing higher gradient morphology; furthermore, the surface layers obtained with laser alloying offer greater heat-resistance and anti-corrosion properties, as well as high wear resistance in addition to the aforementioned hardness, which increases by as much as 15% for the AlSi9Cu4 alloy compared with the alloy after standard heat treatment. Such an increase in the values of the mechanical properties makes it possible to use the investigated alloy in applications including, e.g., recyclable thermally exposed surfaces, such as pistons in internal combustion engines, which enables further decrease in the weight and the thermal expansion with simultaneous increase in the strength, reduction in fuel consumption, and increase in carrying load, speed, and range, which generates the need for further research into the area.
Czasopismo
Rocznik
Strony
5--18
Opis fizyczny
Bibliogr. 31 poz.
Twórcy
  • Silesian University of Technology, Faculty of Transport and Aviation Engineering, Krasinskiego 8, 40-019 Katowice, Poland
  • Silesian University of Technology, Faculty of Transport and Aviation Engineering, Krasinskiego 8, 40-019 Katowice, Poland
Bibliografia
  • 1. Lamb, C. To War in a Stringbag. London: Cassell & Co., 2001.
  • 2. Insua, D.R. & Alfaro, C. & Gomez, J. & Hernandez-Coronado, P. & Bernal, F. Forecasting and assessing consequences of aviation safety occurrences. Safety Science. 2019. Vol. 111. P. 243-252.
  • 3. Dawson, D. & Cleggett, C. & Thompson K. & Thomas, M.J.W. Fatigue proofing: The role of protective behaviours in mediating fatigue-related risk in a defence aviation environment. Accident Analysis & Prevention. 2017. Vol. 99. Part B. P. 465-468.
  • 4. Glass, A. Prototypy PZL. 38 „Wilk”, PZL. 50 „Jastrząb”. Polskie konstrukcje lotnicze. Warszawa: Historyczna. 2014. [In Polish: PZL prototypes. 38 "Wolf", PZL. 50 "Hawk". Polish aviation structures. Warsaw: Historical].
  • 5. Gour, D. & Khan, N. & Dehankar, R.N. Implementation of Aircraft Wardrobe Using Honeycomb Composite Over Aluminium. A Review. International Journal of Innovative Science, Engineering & Technology. 2015. Vol. 2(10). P. 220-225.
  • 6. Carpenter, B. Kelly’s Greatest Challenge – The Blackbird. Amazing Achievement – Visionary Tight Leadership. ICNS GATHERING, April 2017. Available at: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8012052.
  • 7. Boyer, R.R. & Cotton, J.D. & Mohaghegh, M. & Schafrik, R.E. Materials considerations for aerospace applications. MRS Bulletin. 2015. Vol. 40. P. 1055-1065.
  • 8. Casati, R. & Vedani, M. Metal Matrix Composites Reinforced by Nano-Particles – A Review. Metals. 2014. Vol. 4. P. 65-83. DOI: 10.3390/met4010065.
  • 9. Jayalakshmi, C.G. & Inamdar, A. & Anand, A. & Kandasubramanian, B. Polymer matrix composites as broadband radar absorbing structures for stealth aircrafts. Journal of Applied Polymer Science. 2019. P. 47241 (1-21). DOI: 10.1002/APP.47241.
  • 10. Velu, R. & Vaheed, N.M. & Venkatesan, Ch. & Raspall, F. & Krishnan, M. Experimental investigationon fabrication of thermoset prepreg composites using automated fibre placement process and 3D printed substrate. Procedia CIRP. 2019. Vol. 85. P. 296-301.
  • 11. Mostafa, N.H. & Ismarrubie, Z.N. & Sapuan, S.M. & Sultan, M.T.H. Fibre prestressed polymer-matrix composites: A review. Journal of Composite Materials. 2017. Vol. 51(1). P. 39-66.
  • 12. Ravi, K.R. & Nampoothiri, J. & Raj, B. Nanocomposites: A Gaze through Their Applications in Transport Industry. In: Nanotechnology for Energy Sustainability. Wiley-VCH Verlag GmbH & Co. KGaA. 2017.
  • 13. Galinsky, A.A. & Ryabkov, A. & Berg, V. & Zakuraev, A.F. To the question of thermal joining of composite Al-B materials. Journal of Composite Materials. 2019. Vol. 53(19). P. 2715-2725. DOI: 10.1177/0021998319839130.
  • 14. Bielawski, R. Composite materials in military aviation and selected problems with implementation. Review of the Air Force Academy. 2017. Vol. 1(33). P. 11-16.
  • 15. Tyczynski, P. & Sliwa, R.W. & Ostrowski, R. Analysis of possibilities for modification of drill bit geometrical parameters used to drill holes in composite materials of various composition. Aircraft Engineering and Aerospace Technology. 2015. Vol. 87(2). P. 120-130.
  • 16. Konieczny, J. Materials used in the construction of military aviation. Armia. 2013. Vol. 56(4). P. 68-75.
  • 17. Almosni, S. & Delamarre, A. & Jehl, Z. & Suchet, D. & et al. Material challenges for solar cells in the twenty-first century: directions in emerging technologies. Science and Technology of Advanced Materials. 2018. Vol. 19(1). P. 336-369.
  • 18. Smith, R.V. & Graham, J.P. Westland and the Attack Helicopter –from Lynx to Apache. Journal of Aeronautical History. 2020. Vol. 5. P. 129-211.
  • 19. Brocklehurst, A. & Barakos, G.N. A review of helicopter rotor blade tip shapes. Progress in Aerospace Sciences. 2013. Vol. 56. P. 35-74.
  • 20. Sultan, M.T.H. & Worden, K. & Staszewski, W.J. & Pierce, S.G. & Duliue-Barton, J.M. & Hodzic, A. Impact damage detection and quantification in CFRP laminates: A precursor to machine learning. Structural Health Monitoring 2009: From system integration to autonomous systems – Proceedings of the 7th International Workshop on Structural Health Monitoring, IWSHM 2009. Vol. 2. 2009. P. 1528-1537.
  • 21. Pavel, C.C. & Tzimas, E. Raw materials in the European defence industry. Luxembourg: Publications Office of the European Union. 2016.
  • 22. Gloria, A. & Montanari, R. & Richetta, M. & Varone, A. Alloys for aeronautic applications: state of the art and perspectives. Metals. 2019. Vol. 9. No. 662. P. 1-26. DOI: 10.3390/met9060662.
  • 23. Tucker, S.C. (Ed.). Weapons and Warfare [2 volumes]: From Ancient and Medieval Times to the 21st Century. Santa Barbara: ABC-CLIO, 2020.
  • 24. Di Martino, G.D. & Mungiguerra, S. & Cecere, A. & Savino, R. & Vinci, A. & Zoli, L. & Sciti, D. Hybrid rockets with nozzle In Ultra-High-Temperature Ceramic Composites. Conference: 69th International Astronautical Congress (IAC). Bremen, Germany. 2018.
  • 25. Luthra, K. Development and commercialization of GE's ceramic matrix composites (CMCs) for aircraft engines. In: Advanced Ceramic Matrix Composites: Science and Technology of Materials, Design, Applications, Performance and Integration. Tokyo University of Technology, Japan. 2017. Available at: http://dc.engconfintl.org/acmc/60.
  • 26. Dolata, A.J. & Dyzia, M. & Jaworska, L. Cast hybrid composites designated for air compressor pistons. Archives of Metallurgy and Materials. 2016. Vol. 61(2). P. 705-708.
  • 27. Resources, Tools and Basic Information for Engineering and Design of Technical Applications! Available at: https://www.engineeringtoolbox.com/.
  • 28. Benasciutti, D. & Moro, L. & Srnec Novak, J. (Eds.). Metal Plasticity and Fatigue at High Temperature. MDPI. Switzerland, 2019.
  • 29. Sha, J. & Wang, S. & Dai, J. & Zu, Y. & Li, W. & Sha, R. High-temperature mechanical properties and their influence mechanisms of ZrC-Modified C-SiC ceramic matrix composites up to 1600°C. Materials. 2020. Vol. 13. No. 1581. P. 1-17. DOI: 10.3390/ma13071581.
  • 30. Labisz, K. & Konieczny, J. & Jurczyk, S. & Tański, T. & Krupiński, M. Thermo-derivative analysis of Al-Si-Cu alloy used for surface treatment. Journal of Thermal Analysis and Calorimetry. 2017. Vol. 129. P. 895-903. DOI 10.1007/s10973-017-6204-9. 2017.
  • 31. Konieczny, J. & Labisz, L. & Polok-Rubiniec, M. & Włodarczyk-Fligier. Influence of aluminium alloy anodizing and casting methods on structure and functional properties. Archives of Metallurgy and Materials. 2016. Vol. 61(3). P. 1337-1342. DOI: 10.1515/amm-2016-0220.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-33938498-cf10-432e-baac-17746945c794
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.