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Abstract

There is presented the IS&RDSS application to feration and reliability of an exemplary compleghical
system optimization. There are determined, thenagtiimit transient probabilities of the exemplaystem
operation process at the particular operation stataximizing the system lifetime in the reliabilgyates not
worse than the critical reliability state and ifgti;mal sojourn times at the particular operaticatest. There are
evaluated the exemplary system optimal unconditiomaltistate reliability function, the optimal exgted
values and the standard deviations of its uncaditi lifetimes in the reliability state subsets ahe optimal
mean values of its lifetimes in the particular abllity states are. Moreover, in the case whensyystem is
repairable, its optimal renewal and availabilityacdrcteristics are found.

8. The exemplary system operation process
optimization U(2) = p, [(48387+ p, (69444

8.1. Optimal transient probabilities of the
system operation process at operation states

Considering the equations (63)-(66) given in [B], i  Arbitrarily assumed, the lowep, and upperp,

is natural to assume thqt the system operation bounds of the unknown transient probabilitips,
process has a significant influence on the system

reliability. This influence is also clearly expreds P = 1234 defined in [1] by (9.5), respectively
in the equations (67), (69), (71) in [3] for theane  are:
values of the system unconditional lifetimes in the
reliability state subsets that can be used for the P, =0.201 p, = 003, p, =0.245,
system operation process optimization performed p, = 0.309;
in the accordance with the procedure proposed in
Section 9.2.1 of [1].

The objective function defined by (9.1) from
[1], in this case as the system critical state is
r = 2, takes the form

+ p, (383 04+ p, [25388. (78)

p, =0.351, p, =0.105, p, = 0.395,
p, = 0.459.
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Therefore, according to (9.2)-(9.3) from [1], we % =

) . 1-
assume the following bound constraints i

X §=1-x

0.785,

Ma

1

0.201< p, £0.351, 003< p, <0.105 =1- 0.785=0.215 (86)
0.245< p, < 0.395, 0.309< p, < 0.459, and according to (9.12) from [1], wg f5)d
4 x°=0, x°=0, x°-x°=0,
zp, =1 (80)
X' =003, X' =0.105, x'-x'=0.075
Now, in order to find the optimal valugg, of the
transient probabilites p, , b= 1234 that x* =0.231 X* =0456, X°-X"=0225
maximize the objective function (78), we arrange L, AB i s
the system conditional lifetimes mean values X =0476. X* =0.851 X*-X" =0.375
U, (2), b= 1234 in non-increasing order
X*=0785 x* =131 x*-x"=0525.  (87)

2) > 2) = 2) 2 2).
HD2 (22 122 4.2 From the above, the inequality (9.13) frojt]

Next, according to (9.6) from [1], we substitute takes the form

X' -x' <0215 (88)

X, =p,=0.038 x, =p, =0.214

Thus, from the above and from (87), it follows that

X; = P; = 0293 x, = p, = 0.455 (81) the largest valuel O {01234}such that the

and inequality (88) is satisfied, it = 1.
Therefore, we fix the optimal solution that

o o maximize linear function (83) according to the rule

X, = P, =0.201 x, = p, = 003, (9.15) from[1]. Namely, we get

X, = p, =0.245, X, = p, =0.309,

X, = %, =0.215,

X, =p, =0.351 x, = p, =0.105,

X, = P, =0.395, X, = p, =0.459 (82) X, = §=x'+ X' +X,
and we maximize with respect tg i,= 1234 =0.215-0.105+ 003+ 0.201= 0.34],

the linear form (78) that according to (9.7)-(9.10
from [1] takes the form

U(2) = x [69444 +x, [48387 + x, (38304

+x,125388 (83)
with the following bound constraints
003< x, = 0.105, 0.201< x, < 0.35],
0.245< x, < 0.395, 0.309< x, <0459, (84)
>x =1 (85)

’!‘

According to (9.11) from [1] we calculate
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X, = X, = 0.245,

X, =X, =0.309 (89)
Finally, after making the inverse to (81)
substitution, we get the optimal transient
probabilities

p, =x, =0.105 p, =x, =0.34],

p, = X, =0.245, p, =%, =0.309, (8.8§90)

that maximize the system mean lifetime in the
reliability state subset {23} expressed by the
linear form (78) giving, according to (9.18) from
[1] and (9.14), its optimal value



SSARS

2011

Summer Safety and Reliability Semindidy 03-09 2011, Gdaisk-Sopot, Poland

4(2) = p, 48387+ p, (69444+ p, (38304
+p, (253 88
= 0341148387+ 0.105[69444+

+0.245[383 04+ 0.309(25388

= 410.20 (91)

8.2. Optimal sojourn times of the system
operation process at operation states

Having the values of the optimal transient
probabilities determined by (90), it is possible to
find the optimal unconditional and conditional
mean values of the sojourn times of the exemplary
system operation process at the operation states
and the optimal mean values of the total
unconditional sojourn times of the exemplary
system operation process at the operation states
during the fixed operation time as well.

Substituting the optimal transient probalkti
at operation states

b, = 0.341, p, = 0.105,
b, =0.245, p, =0.309,

determined i(90) and the steady probabilities

7, 00.236, 77, 00.169,
n, C0234 m, 00.361,

determined by (16) in Section 5 [3] into (9.20)
from[1], we get the following system of equations

-0.15552M, +0.05762%/, + 0.07979M
+0.12310M, =0

0.02478, - 0.151258/, + 0.0245M
+0.03790%1, =0

0.0578M, +0.0414081, - 0.1766™M,
+0.088448/1, =0

0.07292M, +0.05222M, + 0.072308M ,
-0.24945M, =0 (92)
with the unknown optimal mean valués, of the

system unconditional sojourn times in
operation states we are looking for.

the
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Since the determinant of the main matrix of the
system of equations (92) is equal to 0, then & ra

is less than 4 and there are non-zero solutions of
this system of equations that are ambiguous and
dependent on one or more parameters. We may
suppose that, for instance, we are arbitrarily

interested in the fixed value &fl, and we put

M, =40Q

Consequently, from (92), we get the system of
equations

- 0.1555241, + 0.05762 , + 0.07979M,
= -49.2404

0.02478/, — 0.15125%4, + 0.0245M,
-15.1620

0.0578M, +0.0414081, - 0.1766™M,
= -35.3780

0.07292M, +0.05222M, + 0.072306M ,
= 99.7804,

and we solve it with respect tol,, M, and M,.

This way obtained the solutions of the system of
equations (92), are

M, C 675,M, C 290,

M, C 490, M, =40Q (93)

It can be seen that these solutions differ mucinfro
the valuesM,, M,, M, and M, estimated in
Section 5 [3] by (12)-(1).

Having these solutions, it is also possible to
look for the optimal valuesM, of the mean

values M, of the conditional sojourn times at

operation states. Namely, substituting the
probabilities

0 022 032 046
020 O 030 050
012 016 0 072
048 022 030 O

[Pu]=

of the system operation process transitions between
the operation states, determined by (1) in Se@&ion

[2], and the optimal mean valued, given by



Kotowrocki Krzysztof, Soszska-Budny Joanna, Xie Min
Testing the integrated package of tools supportiegjsion making on identification, prediction and
optimization of complex technical systems operatielmbility and safety. Part 4 IS&RDSS Applicatie
Exemplary system operation and reliability optintiza

(93) into (9.21) from [1], we get the following
system of equations

022M,, + 032M , + 046M ,, =675
020M,, + 030M,, + 050M ,, = 290
012M,, + 016M,, + 072M,, = 490
048M,, + 022M ,, + 030M ,, = 400

with the unknown optimal valuelsl, we want to

find.

As the solutions of the above system of equations
are ambiguous, then we arbitrarily fix some of

them, for instance because of practically important
reasons, and we find the remaining ones.

In this case, we proceed as follows:

- we fix in the first equatiorM,, = 20Q
M,, =500 and we find M,, 01024

- we fix in the second equatidv ,, =10Q
M,, =100 and we find M, [148Q

- we fix in the third equatioM ., =90Q
M., =500 and we find M, 0419

- we fix in the fourth equatioM ,, = 30Q

M,, =500 and we find M, 487, (94)
Other very useful and much easier to be agplie

in practice tool that can help in more reliable and

safe operation process of the complex technical

In practice, these differences can be very helpful
for the system operation process planning and
reorganizing.

9. The exemplary system reliability
optimization

To make the optimization of the reliability of the
exemplary system we need the optimal valyes

p,, Ps, P,, of the transient probabilitiegp,,
b= 1234, in particular operation states
determined by (90). Substituting these optimal
solutions into the formula (10.2) from [1], we
obtain the optimal mean values of the system

unconditional lifetimes in the reliability state
subsets {1,233} and {3}, that respectively are

(@) = p, [505 + p, [74405 + jp, [40556
+p, [23705

=0.341[505+ 0.105[ 74405

+0.245[40556 + 0.309023705

systems planning are the system operation process

optimal mean values of the total sojourn times at
the particular operation states during the the
system operation timé.

Assuming as in Section 5 [3] the system operation
time €=1 year = 365 days, after aplying (9.22)
from [1], we get their values

E[6,] = p,0 = 0.341[365=1255,
E[6,] = p,6 = 0.105[365= 38.3,
E[8,] = p,0 = 0.245[B65=89.4,

E[6,] = p,6 = 0.309[(B65=112.8,

(95)

that differ much from the values &6, [E[6,],
E[4,], E[6,] determined by (18) in [3].
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[ 422.94, (96)
(3) = p, 146873+ P, 165104 + p, [37067
+p, [23705
= 0341146873+ 0.105[651.04
+0.245[370 67+ 0.309[23705
£392.25 97)

According to (10.6) from [1], the optimal solutions
for the mean values of the system unconditional
lifetimes in the particular reliability states are

HQ = pQ) - (2 =1274
H(2) = ((2) - f(3) =1795
L(3) = u(3) =39225. (98)

Moreover, according to (10.3)-(10.4) from [1], the
corresponding optimal unconditional multistate

reliability function of the system is given by the
vector
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Rt.0=[1, Rt,D, Rt,2), R¢,31,t=0,  (99)
with the coordinates given by
R(t,) = 0.341R(t1)]“ + 0.1050JR(t,1)]
+0.245R(t1)]®
+0.3090R(t.1)]“ fort =0, (100)
R(t,2) = 0.341R(t,2)]® + 0.1050R(t,2)]®
+0.245[R(t,2)] @
+0.309[JR(t,2)]® fort= 0, (101)
R(t,3) = 0.341]R(t,3)]® + 0.105[R(t,3)]®
+0.2450R(t,3)]©
+0.309[JR(t,3)]® fort>0, (102)
where [REDI®,  [RE21V,[REI,
b= 1234, are fixed in Section 6 [3], respectively
by (20)-(22), (27)-(29), (42)-(44), (57)-(59).

The coordinates of the exemplary system optimal
unconditional four-state reliability function are
illustrated inFigure 9

0 100 200 300 400 &S00 BDDE?DD 00 900 1000 1100

Figure 9. The graph of the exemplary system
optimal reliability function[ R(t, )] coordinates

Further, by (10.5) from [1], the corresponding
optimal variances and standard deviations of the
system unconditional lifetime in the system
reliability state subsets are
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o2 () = 2]t Rt Ddt—[ Q)] 0119374.76,
o(1) C345.51, (9.4)(103)

6% (2) = 2t R(t,2)dt—[4(2)] 0101665.04,
6(2) [ 318.85, (104)

6% (3) = 2]t R(t3dt-[x(3)]? 093424.64,
¢ (3) £305.65, (105)

where R(]), R(,2), R(t,3) are given by (10.5)-
(10.7) andi @) f(2), a(3)are given by (8.15)
and (9.1)-(9.2).

If the critical reliability state i = 2, then the

optimal system risk function, according to (10.7)
from [1], is given by

F(t)=1-R(,2) fort=0, (106)
where R(t,2) is given by (101).

Hence, considering (10.8) from [1], the moment
when the optimal system risk function exceeds a
permitted level, for instance = 0.05, is

7=r*(3) L 80. (307

0 100 200 300 400 500 60O ¢ 700 800S00 1000 1100

Figure 10. The graph of the exemplary system
optimal risk functionr (t)

10. The exemplary system renewal and
availability optimization

To determine the optimal renewal and availability
characteristics of the exemplary system after its
operation process optimization, we use the results
of the system reliability characteristics
optimization performed in Sections 8 and 9 and the
results of the Section 11.2 of [1].
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In the case when the exemplary system renovation system

time is ignored, considering the optimal values
[(2) determined by (91) and(2) determined by

(104) and applyindgProposition 11.1from Section
11.2.1 of [1], we determine its following optimal
characteristics:

a) the optimal timeSN (2) until the Nth exceeding

by the system of reliability critical state 2, for
sufficiently large N, has approximately normal

distribution N(41020N,31885/N), i.e.,
F™(2) = P(S, (2 <t)

t-41020N

31885/N

b) the expected value and the variance of the
optimal time SN (2) until theNth exceeding by the

system the reliability critical state 2, for
sufficiently large N, respectively are

DFN(O,l)( ), t0 (=00, 00),

E[S, (2)] = 41020N, D[S, (2)] =10166532N ,

c) the optimal numbeN t ( ,20f exceeding by the

system the reliability critical state 2 up to the
moment t,t=0, for sufficiently larget, has

distribution approximately of the form

41020(N +1) —t

1574/t

) N=012...,

P(N(t.2) = N) OFy 0 ( )

E (41020N—t
NOYY 1574t

d) the expected value and the variance of the
optimal number N(t,2) of exceeding by the

system the reliability critical state 2 up to the

moment t,t>0, for sufficiently large t,
respectively are
H (t,2) = 0.00243, D(t,2) = 0.0018. (108)

To make the estimation of the renewal and
availability of the exemplangystem in the case
when the time of renovation is non-ignored,
considering the optimal values(2) determined
by (91) andd(2) determined by (104), assuming

the mean value of the system renovation time
U, (2) =10year and the standard deviation of the

404

renovation timeo,(2)= 5year and
applying Proposition 11.2from Section 11.2.2 of
[1], we determine its following optimal
characteristics:

a) the optimal time:é.‘.N (2) until theNth exceeding
by the system the reliability critical state 2, for
sufficiently large N, has approximately normal
distribution

N(41020N +10(N —1),\/10166532N +25(N -1)
,l.e.,

F (.2 = P(S, (2 <t)

t —42020N +10
J10169032N - 25

=FN(O,1)( )- tD(_°°:°°);

b) the expected value and the variance of the

optimal time S, (2) until theNth exceeding by the

system the reliability critical state 2, for
sufficiently largeN, respectively are

E[S, (2)] 041020N +10(N -1,
D[S(2)] 010166532N + 25(N —1) ,

c) the optimal numbeﬁ(t,Z) of exceeding by the

system the reliability critical state 2 up to the
moment t,t =0, for sufficiently large t, has

approximately distribution of the form

42020(N +1) -t —10

1556yt +10

P(N,2) = N) OF, )

42020N -t -10

—_ F (
NODY 1556Vt +10

d) the expected value and the variance of the

) N=12,...,

optimal number ﬁ(t,Z) of exceeding by the

system the reliability critical state 2 up to the
moment t,t>0, for sufficiently large t,

respectively

t+10
42C.2C

H(2) 0O , D (t,2) 00,0014t +10),
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e) the optimal time§N (2) until the Nth system’s

renovation, for sufficiently large N, has
approximately normal distribution
N(42020N,31889/N), i.e.,
= = t —42020N)
F™t,2=PS,(<t)OF —),
(Sy (@) <) OFy gy 31889\/W)

t O (-o0,0), N =12,...,

f) the expected value and the variance of the

optimal time §N (2) until the Nth system’s

renovation, for sufficiently largeN, respectively
are

E[S, (2)] D42020N ,
D[S™ (2)] 010169082N ,

g) the optimal numberﬁ(t,Z) of system’s
renovations up to the moment,t=0, for

sufficiently large t, has approximately distribution
of the form

42020(N +1) -t

1556yt

, N=12,...,

P(N2) = N) OF, 0, (

_p - (42020N
N (0.1) 1556\5

h) the expected value and the variance of the
optimal numberﬁ(t ,2) of system’s renovations up
to the momentt,t >0, for sufficiently large t,
respectively are

H (t,2) 0000238, D (,2) 00.0014,  (109)

i) the optimal steady availability coefficient dfet

system at the moment,t >0, for sufficiently
large t, is

A(t,2) 0098, t=0,

j) the optimal steady availability coefficient dfet
system in the time interval
<t,t+r),7>0, t=0, for sufficiently large t,
is

At,7,2) 00.0024 R¢t,2)dt, t=0, 7>0,
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where R(t,2) is given by (101).
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