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8. The exemplary system operation process 
optimization  

8.1. Optimal transient probabilities of the 
system operation process at operation states 

Considering the equations (63)-(66) given in [3], it 
is natural to assume that the system operation 
process has a significant influence on the system 
reliability. This influence is also clearly expressed 
in the equations (67), (69), (71) in [3] for the mean 
values of the system unconditional lifetimes in the 
reliability state subsets that can be used for the 
system operation process optimization performed 
in the accordance with the procedure proposed in 
Section 9.2.1 of [1].   
     The objective function defined by (9.1) from 
[1], in this case as the system critical state is 

2=r , takes the form  

)2(µ +⋅= 87.4831p 44.6942 ⋅p  

         04.3833 ⋅+ p 88.2534 ⋅+ p .                     (78) 
 
Arbitrarily assumed, the lower bp

(
 and upper bp

)
 

bounds of the unknown transient probabilities bp , 
,4,3,2,1=b  defined in [1] by (9.5), respectively 

are: 
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There is presented the IS&RDSS application to the operation and reliability of an exemplary complex technical 
system optimization. There are determined, the optimal limit transient probabilities of the exemplary system 
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Therefore, according to (9.2)-(9.3) from [1], we 
assume the following bound constraints  
 
   ,351.0201.0 1 ≤≤ p  ,105.003.0 2 ≤≤ p  

   ,395.0245.0 3 ≤≤ p  ,459.0309.0 4 ≤≤ p                                                                                   (8.2) 

   ∑ =
=

4

1
.1

b
bp                                                   (80) 

 
Now, in order to find the optimal values bp&  of the 

transient probabilities ,bp  4,3,2,1=b  that 
maximize the objective function (78), we arrange 
the system conditional lifetimes mean values 

),2(bµ  4,3,2,1=b  in non-increasing order 
 
   ≥)2(2µ ≥)2(1µ ≥)2(3µ ).2(4µ  
 
Next, according to (9.6) from [1], we substitute  

   038.021 == px  214.012 == px     

   ,293.033 == px 455.044 == px                  (81) 
 
and 
 
   201.012 == px

((
, 03.021 == px

((
,  

   245.033 == px
((

, 309.044 == px
((

, 
 
   351.012 == px

))
, 105.021 == px

))
,     

   395.033 == px
))

, 459.044 == px
))

.               (82) 
 
and we maximize with respect to ,ix  4,3,2,1=i  
the linear form (78)  that according to (9.7)-(9.10) 
from [1] takes the form  

   )2(µ 44.6941 ⋅= x 87.4832 ⋅+ x 04.3833 ⋅+ x    

            ,88.2534 ⋅+ x                                            (83) 
 
with the following bound constraints 
 
   ,105.003.0 1 ≤≤ x  ,351.0201.0 2 ≤≤ x           

   ,395.0245.0 3 ≤≤ x  ,459.0309.0 4 ≤≤ x      (84)                                                                                (8.8) 
 

   ∑ =
=

4

1
.1

i
ix                                                 (85) 

 
According to (9.11) from [1] we calculate   

   ∑ ==
=

4

1
,785.0

i
ixx
((  xy

(−= 1ˆ   

      = 1 -  0.785 = 0.215                                     (86) 
 
and according to (9.12) from [1], we find   
 
   ,00 =x

(
 00 =x
) ,  ,000 =− xx

()
 

 
   ,03.01 =x

(
 ,105.01 =x
)

 ,075.011 =− xx
()

 
 

   ,231.02 =x
(

 ,456.02 =x
)

 ,225.022 =− xx
()

 
 

   .476.03 =x
(  ,851.03 =x

)
 ,375.033 =− xx

()
 

 
   785.04 =x

(  31.14 =x
)  .525.044 =− xx

()        (87)
                             
From the above, the inequality (9.13) from [1] 
takes the form  

   .215.0<− II xx
()

                                       (88) 
 
Thus, from the above and from (87), it follows that 
the largest value }4,3,2,1,0{∈I  such that the 

inequality (88) is satisfied, is .1=I   
Therefore, we fix the optimal solution that 
maximize linear function (83) according to the rule 
(9.15) from [1]. Namely, we get  
 
   215.011 == xx

)
& , 

 
   2

11
2

ˆ xxxyx
(()

& ++−=  
 
   ,341.0201.003.0105.0215.0 =++−=  

 
   ,245.033 == xx

(
&  

   .309.044 == xx
(

&                                               (89) 
 
Finally, after making the inverse to (81) 
substitution, we get the optimal transient 
probabilities  
 
   ,105.012 == xp &&  ,341.021 == xp &&   

 
   ,245.033 == xp &&  ,309.044 == xp &&                (90) 
      
that maximize the system mean lifetime in the 
reliability state subset }3,2{  expressed by the 
linear form (78) giving, according to (9.18) from 
[1] and (9.14), its optimal value  
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   )2(µ& +⋅= 87.4831p& +⋅ 44.6942p& 04.3833 ⋅p&   
 
            88.2534 ⋅+ p&  
                                                   
           +⋅= 87.483341.0 +⋅ 44.694105.0  
 
          04.383245.0 ⋅+ 88.253309.0 ⋅+  
 
          = 410.20                                        (91) 
 
8.2. Optimal sojourn times of the system 
operation process at operation states 

Having the values of the optimal transient 
probabilities determined by (90), it is possible to 
find the optimal unconditional and conditional 
mean values of the sojourn times of the exemplary 
system operation process at the operation states 
and the optimal mean values of the total 
unconditional sojourn times of the exemplary 
system operation process at the operation states 
during the fixed operation time as well.   
     Substituting the optimal transient probabilities 
at operation states  
 
   ,341.01 =p& ,105.02 =p&   

   ,245.03 =p&  ,309.04 =p&  
 
determined in (90) and the steady probabilities   

 
   ,236.01 ≅π  ,169.02 ≅π      

   ,234.03 ≅π ,361.04 ≅π  

determined by (16) in Section 5 [3] into (9.20) 
from [1],  we get the following system of equations  
 
   1155524.0 M&− 2057629.0 M&+ 3079794.0 M&+  

   4123101.0 M&+  = 0 
 
   102478.0 M& 2151255.0 M&− 302457.0 M&+  

   4037905.0 M&+  = 0 
 
   105782.0 M& 2041405.0 M&+ 317667.0 M&−  

   4088445.0 M&+  = 0 
 
   1072924.0 M& 2052221.0 M&+ 3072306.0 M&+  

   4249451.0 M&−  = 0                                          (92) 
 
with the unknown optimal mean values bM&  of the 
system unconditional sojourn times in the 
operation states we are looking for. 

Since the determinant of the main matrix of the 
system of equations (92) is equal to 0, then its rank 
is less than 4 and there are non-zero solutions of 
this system of equations that are  ambiguous and 
dependent on one or more parameters. We may 
suppose that, for instance, we are arbitrarily 
interested in the fixed value of 4M&  and we put    
 
   .4004 =M&  

 
Consequently, from (92), we get the system of 
equations  

 
   1155524.0 M&− 2057629.0 M&+ 3079794.0 M&+   
   = -49.2404 
 
   102478.0 M& 2151255.0 M&− 302457.0 M&+   
   = -15.1620 
 
   105782.0 M& 2041405.0 M&+ 317667.0 M&−   
   = -35.3780 
 
   1072924.0 M& 2052221.0 M&+ 3072306.0 M&+   
   = 99.7804, 
  
and we solve it with respect to 1M& , 2M&  and 3M& . 
This way obtained the solutions of the system of 
equations (92), are  

 
   1M& ≅  675, 2M&  ≅  290,  

   3M&  ≅  490,  .4004 =M&                                  (93) 
 
It can be seen that these solutions differ much from 
the values 1M , ,2M  3M  and 4M  estimated in 
Section 5 [3] by (12)-(1).  
     Having these solutions, it is also possible to 
look for the optimal values blM&  of the mean 

values blM  of the conditional sojourn times at 
operation states. Namely,  substituting the 
probabilities  

   =][ blp



















030.022.048.0

72.0016.012.0

50.030.0020.0

46.032.022.00

 

 
of the system operation process transitions between 
the operation states, determined by (1) in Section 3 
[2], and the optimal mean values bM&  given by 



Kołowrocki Krzysztof, Soszyńska-Budny Joanna, Xie Min 
Testing the integrated package of tools supporting decision making on identification, prediction and 

optimization of complex technical systems operation, reliability and safety. Part 4 IS&RDSS Application – 
Exemplary system operation and reliability optimization 

 

 402

(93) into (9.21) from [1], we get the following 
system of equations   
 
   1222.0 M& 1332.0 M&+ 1446.0 M&+ 675=   
 
   2120.0 M& 2330.0 M&+ 2450.0 M&+ 290=  
 
   3112.0 M& 3216.0 M&+ 3472.0 M&+ 490=  
 
   4148.0 M& 4222.0 M&+ 1430.0 M&+ 400=  
 
with the unknown optimal values blM&  we want to 
find.  
As the solutions of the above system of equations 
are ambiguous, then we arbitrarily fix some of 
them, for instance because of practically important 
reasons, and we find the remaining ones.  
In this case, we proceed as follows:  
- we fix in the first equation ,20012 =M&  

50013 =M&  and we find  ;102414 ≅M&  

- we fix in the second equation ,10021 =M&  

10023 =M&  and we find  ;48024 ≅M&  

- we fix in the third equation ,90031 =M&  

50032 =M&  and we find  ;41934 ≅M&  

- we fix in the fourth equation ,30041 =M&  

50042 =M&  and we find  .48743 ≅M&                 (94) 
     Other very useful and much easier to be applied 
in practice tool that can help in more reliable and 
safe operation process of the complex technical 
systems planning are the system  operation process 
optimal mean values of the total sojourn times at 
the particular operation states during the the 
system operation time .θ  
Assuming as in Section 5 [3]  the system operation 
time 1=θ  year = 365 days, after aplying (9.22) 
from [1], we get their values  
 

   ,5.125365341.0]ˆ[ 11 =⋅== θθ pE &&   
 
   ,3.38365105.0]ˆ[ 22 =⋅== θθ pE &&   

 
   ,4.89365245.0]ˆ[ 33 =⋅== θθ pE &&  
 
   ,8.112365309.0]ˆ[ 44 =⋅== θθ pE &&                (95) 
 

that differ much from the values of ],ˆ[ 1θE  ],ˆ[ 2θE  

],ˆ[ 3θE  ]ˆ[ 4θE  determined by (18) in [3]. 

In practice, these differences can be very helpful 
for the system operation process planning and 
reorganizing. 
 
9. The exemplary system reliability 
optimization 

To make the optimization of the reliability of the 
exemplary system we need the optimal values 1p& , 

2p& , ,3p&  ,4p&  of the transient probabilities bp , 
,4,3,2,1=b  in particular operation states 

determined by (90). Substituting these optimal 
solutions into the formula (10.2) from [1], we 
obtain the optimal mean values of the system 
unconditional lifetimes in the reliability state 
subsets }3,2,1{  and },3{  that respectively are  
 
   )1(µ& 5051 ⋅= p& 05.7442 ⋅+ p& 56.4053 ⋅+ p&          
 
           05.2374 ⋅+ p&  
 
           505341.0 ⋅= 05.744105.0 ⋅+  
 
           56.405245.0 ⋅+ 05.237309.0 ⋅+  
 
           ≅ 422.94,                                                 (96) 
 
   )3(µ& 73.4681 ⋅= p& 04.6512 ⋅+ p& 67.3703 ⋅+ p&   
 
           05.2374 ⋅+ p&  
 
           +⋅= 73.468341.0 04.651105.0 ⋅  
 
          67.370245.0 ⋅+ 05.237309.0 ⋅+  
 
          ≅ 392.25.                                                  (97) 
 
According to (10.6) from [1], the optimal solutions 
for the mean values of the system unconditional 
lifetimes in the particular reliability states are  
 

74.12)2()1()1( =−= µµµ &&&   
 

95.17)3()2()2( =−= µµµ &&&    
 

.25.392)3()3( == µµ&                                        (98) 
 

Moreover, according to (10.3)-(10.4) from [1], the 
corresponding optimal unconditional multistate 
reliability function of the system is given by the 
vector   
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   ),( ⋅tR& =[1, )1,(tR& , )2,(tR& , )3,(tR& ], ,0≥t       (99)                 
          (9.4) 
with the coordinates given by  
 
   )1,(tR& )1()]1,([341.0 tR⋅= )2()]1,([105.0 tR⋅+  
 
              )3()]1,([245.0 tR⋅+  

             )4()]1,([309.0 tR⋅+  for t ≥ 0,               (100)                         
                                                                

)2,(tR& )1()]2,([341.0 tR⋅= )2()]2,([105.0 tR⋅+      
 
            )3()]2,([245.0 tR⋅+  

            )4()]2,([309.0 tR⋅+  for t ≥ 0,               (101) 
 

)3,(tR& )1()]3,([341.0 tR⋅= )2()]3,([105.0 tR⋅+  
 
            )3()]3,([245.0 tR⋅+  
 
            )4()]3,([309.0 tR⋅+  for t ≥ 0,               (102)                         
                                                     
where  ,)]1,([ )(btR  ,)]2,([ )(btR ,)]3,([ )(btR  

,4,3,2,1=b  are fixed in Section 6 [3], respectively 
by (20)-(22), (27)-(29), (42)-(44), (57)-(59). 
 
The coordinates of the exemplary system optimal 
unconditional four-state reliability function are 
illustrated in Figure 9. 
 

 
 
Figure 9. The graph of the exemplary system 
optimal reliability function )],([ ⋅tR&  coordinates 
 
Further, by (10.5) from [1], the corresponding 
optimal variances and standard deviations of the 
system unconditional lifetime in the system 
reliability state subsets are 
 

   ∫=
∞

0

2 2)1( tσ& ≅− 2)]1([)1,( µ&& dttR 119374.76,    

  ≅)1(σ& 345.51,                                                (103) 
 

   ∫=
∞

0

2 2)2( tσ& ≅− 2)]2([)2,( µ&& dttR 101665.04,      

   ≅)2(σ& 318.85,                                              (104) 
 

   ∫=
∞

0

2 2)3( tσ& ≅− 2)]3([)3,( µ&& dttR 93424.64,     

   ≅)3(σ& 305.65,                                              (105) 
 
where ),1,(tR& ),2,(tR& )3,(tR& are given by (10.5)-
(10.7) and )1(µ& , ),2(µ&  )3(µ& are given by (8.15) 
and (9.1)-(9.2). 
If the critical reliability state is r = 2, then the 
optimal system risk function, according to (10.7) 
from [1], is given by  
 
   )(tr& = )2,(1 tR&−  for t ≥ 0,                             (106) 
 
where )2,(tR&

 
is given by (101).  

Hence, considering (10.8) from [1], the moment 
when the optimal system risk function exceeds a 
permitted level, for instance δ  = 0.05, is  

   τ& = )(δ-1r&  ≅  80.                                           (107) 

 

 
 
Figure 10. The graph of the exemplary system 
optimal risk function )(tr  
 
10. The exemplary system renewal and 
availability optimization  

To determine the optimal renewal and availability 
characteristics of the exemplary system after its 
operation process optimization, we use the results 
of the system reliability characteristics 
optimization performed in Sections 8 and 9 and the 
results of the Section 11.2 of [1].  
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 In the case when the exemplary system renovation 
time is ignored, considering the optimal values  

)2(µ&  determined by (91) and )2(σ&  determined by 
(104) and applying Proposition 11.1 from Section 
11.2.1 of [1], we determine its following optimal 
characteristics: 
a) the optimal time )2(NS&  until the Nth exceeding 
by the system of reliability critical state 2, for 
sufficiently large N, has approximately normal 

distribution )85.318,20.410( NNN , i.e., 
 
  =)2,()( tF N& ))2(( tSP N <  
 

   ),
85.318

20.410
()1,0(

N

Nt
FN

−≅  ),,( ∞−∞∈t  

 
b) the expected value and the variance of the 
optimal time )2(NS&  until the Nth exceeding by the 
system the reliability critical state 2, for 
sufficiently large  ,N  respectively are 
 
   ,20.410)]2([ NSE N =&  NSD N 32.101665)]2([ =& , 
 
c) the optimal number )2,(tN&  of exceeding  by the 
system the reliability critical state 2 up to the 
moment ,0, ≥tt  for sufficiently large t, has 
distribution approximately of the form 
 

   ))2,(( NtNP =& )
74.15

)1(20.410
()1,0(

t

tN
FN

−+≅  

   )
74.15

20.410
()1,0(

t

tN
FN

−−  ,...2,1,0=N , 

 
d) the expected value and the variance of the 
optimal number )2,(tN  of exceeding by the 
system the reliability critical state 2 up to the 
moment ,0, ≥tt  for sufficiently large t, 
respectively are   
 
   ,00243.0)2,( ttH =  .0015.0)2,( ttD =          (108) 
 
To make the estimation of the renewal and 
availability of the exemplary system in the case 
when the time of renovation is non-ignored, 
considering the optimal values  )2(µ&  determined 

by (91) and )2(σ&  determined by (104), assuming 
the mean value of the system renovation time 

10)2(0 =µ year and the standard deviation of the 

system renovation time 5)2(0 =σ  year and 
applying Proposition 11.2 from Section 11.2.2 of 
[1], we determine its following optimal 
characteristics: 

a) the optimal time )2(NS&  until the Nth exceeding 
by the system the reliability critical state 2, for 
sufficiently large  ,N  has approximately normal 
distribution 

)1(2532.101665),1(1020.410( −+−+ NNNNN

, i.e., 
 

   =)2,()( tF N& ))2(( tSP N <&  
 

   ),
2532.101690

1020.420
()1,0( −

+−=
N

Nt
FN  ),( ∞−∞∈t ; 

 
b) the expected value and the variance of the 

optimal time )2(NS&  until the Nth exceeding by the 
system the reliability critical state 2, for 
sufficiently large ,N  respectively are 
 

   )1(1020.410)]2([ −+≅ NNSE N
& ,   

  

   )1(2532.101665)]2([ −+≅ NNSD & ,     
  

c) the optimal number )2,(tN&  of exceeding by the 
system the reliability critical state 2 up to the 
moment ,0, ≥tt  for sufficiently large  ,t  has 
approximately distribution of the form 
 

   ))2,(( NtNP =& )
1056.15

10)1(20.420
()1,0( +

−−+≅
t

tN
FN  

 

   )
1056.15

1020.420
()1,0( +

−−−
t

tN
FN ,...2,1=N , 

 
d) the expected value and the variance of the 

optimal number )2,(tN&  of exceeding by the 
system the reliability critical state 2 up to the 
moment ,0, ≥tt  for sufficiently large  ,t  
respectively 
 

   
20.420

10
)2,(

+≅ t
tH& , ),10(0014.0)2,( +≅ ttD&                                                                              
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e) the optimal time )2(NS
&

 until the Nth system’s 
renovation, for sufficiently large N, has 
approximately normal distribution 

)89.318,20.420( NNN , i.e., 
 

  =)2,()( tF N&
),

89.318

)20.420
())2(( )1,0(

N

Nt
FtSP NN

−≅<
&

  

   ),,( ∞−∞∈t ,...2,1=N ,  
 
f) the expected value and the variance of the 

optimal time )2(NS
&

 until the Nth system’s 

renovation, for sufficiently large ,N  respectively 
are 
 

   NSE N 20.420)]2([ ≅
&

,    

  NSD N 32.101690)]2([ )( ≅
&

, 
                     

g) the optimal number )2,(tN
&

 of system’s 
renovations up to the moment ,0, ≥tt  for 
sufficiently large  ,t  has approximately distribution 
of the form       
 

   ))2,(( NtNP =
&

t

tN
FN

56.15

)1(20.420
()1,0(

−+≅  

   
t

tN
FN

56.15

20.420
()1,0(

−− ,
 

,...2,1=N , 

 
h) the expected value and the variance of the 

optimal number )2,(tN
&

 of system’s renovations up 

to the moment ,0, ≥tt  for sufficiently large  ,t  
respectively are 
 

   ,00238.0)2,( ttH ≅
&

 ,0014.0)2,( ttD ≅
&

        (109) 
 
i) the optimal steady availability coefficient of the 
system at the moment ,0, ≥tt  for sufficiently 
large  ,t  is  
 

98.0)2,( ≅tA& , ,0≥t  
 
j) the optimal steady availability coefficient of the 
system in the time interval 

,0),, >+< ττtt ,0≥t  for sufficiently large  ,t  
is  
 

   ,)2,(0024.0)2,,( ∫≅
∞

τ
τ dtttA R&& ,0≥t ,0>τ  

where )2,(tR& is given by (101). 
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