Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article presents the results of research on transverse flux machine (TFM) modifications that led to the development of the cogging machine (PMCM) concept and its further evolutions. The transformation process of the cogging machine from a multi-segment to a single-segment modular design has resulted in a structure identical to the known and commonly used fractional slot concentrated winding permanent magnet synchronous machine (FSCW-PMSM). The paper describes the features gained and lost by the modified machine in various transformation stages. An original method for selecting the number of winding modules is also proposed, depending on the number of coils in a module and the pitch of the pole using a separating tooth between the modules.
Czasopismo
Rocznik
Tom
Strony
393--407
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wykr., wz.
Twórcy
autor
- Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering
Bibliografia
- [1] Mordey W.M., Electric Generator (1890).
- [2] Weh H., May H., Achievable Force Densities for Permanent Magnet Excited Machines in New Configurations, Proceedings of the Internet Conference Electrical Machines (ICEM86), pp. 1107–1111 (1986).
- [3] Renedo Anglada J., Sharkh S.M., Analytical calculation of the torque produced by transverse flux machines, IET Electric Power Applications, vol. 11, pp. 1298–1305 (2017), DOI: 10.1049/ietepa.2016.0759.
- [4] McLean G.W., Brushless d.c. drives using claw-type stator and disc rotor, Proc. Inst. Electr. Eng., vol. 126, iss. 7, pp. 683–689 (1979), DOI: 10.1049/piee.1979.0153.
- [5] Kaiser B., Parspour N., Transverse Flux Machine – A Review, IEEE Access, vol. 10, pp. 18395–18419 (2022), DOI: 10.1109/access.2022.3150905.
- [6] Ghaheri A., Afjei E., Torkaman H., A novel axial air-gap transverse flux switching PM generator, Design, simulation and prototyping, IET Electric Power Applications, vol. 17, pp. 452–463 (2023), DOI: 10.1049/elp2.12277.
- [7] Łukaniszyn M., Kowol M., Kołodziej J., Optimization of a two-phase transverse flux switched reluctance motor with an outer rotor, Archives of Electrical Engineering, vol. 61, pp. 567–578 (2012), DOI: 10.2478/v10171-012-0042-y.
- [8] Ballestín-Bernad V., Artal-Sevil J.S., Domínguez-Navarro J.A., A Review of Transverse Flux Machines Topologies and Design, Energies, vol. 14, no. 21, 7173 (2021), DOI: 10.3390/en14217173.
- [9] Reinap A., Hagstedt D., Högmark C., Alaküla M., Evaluation of a semi claw-pole machine with SM2C core, 2011 IEEE International Electric Machines & Drives Conference (IEMDC), pp. 248–253 (2011).
- [10] Drabek T., Kapustka P., Lerch T., Skwarczyński J., A Novel Approach to Transverse Flux Machine Construction, Energies, vol. 14, no. 22, 7690 (2021), DOI: 10.3390/en14227690.
- [11] Baserrah S., Rixen K., Orlik B., Transverse flux machines with distributed windings for in-wheel applications, IEEE, 2009 International Conference on Power Electronics and Drive Systems (PEDS), pp. 102–108, Taipei (2009), DOI: 10.1109/PEDS.2009.5385859.
- [12] Seibold P., Schuller F., Beez M., Parspour N., Design and measurement of a laminated permanent magnet excited transverse flux machine for electrical vehicles, 2014 4th International Electric Drives Production Conference (EDPC), pp. 1–6 (2014), DOI: 10.1109/EDPC.2014.6984411.
- [13] Bailey J.M., Fractional-Slot Surface Mounted PM Motors with Concentrated Windings for HEV Traction Drives, Oak Ridge National Lab., (ORNL), Oak Ridge, TN (United States) (2005).
- [14] Cros J., Viarouge P., Synthesis of high performance PM motors with concentrated windings, IEEE International Electric Machines and Drives Conference, IEMDC’99, Proceedings (Cat. No. 99EX272), IEEE, Seattle, WA, USA, pp. 725–727 (1999).
- [15] Chung S.-U., Kim J.-M., Koo D.-H., Woo B.-C., Hong D.-K., Lee J.-Y., Fractional Slot Concentrated Winding Permanent Magnet Synchronous Machine with Consequent Pole Rotor for Low Speed Direct Drive, IEEE Trans. Magn., vol. 48, iss. 11, pp. 2965–2968 (2012), DOI: 10.1109/TMAG.2012.2196417.
- [16] Cros J., Viarouge P., Synthesis of high performance PM motors with concentrated windings, IEEE Trans. Energy Convers., vol. 17, iss. 2, pp. 248–253 (2002), DOI: 10.1109/TEC.2002.1009476.
- [17] Ede J.D., Atallah K., Howe D., Design variants of modular permanent magnet brushless machine, J. Appl. Phys., vol. 91, pp. 6973–6975 (2002), DOI: 10.1063/1.1452669.
- [18] Zhang X., Wang X., Xu X., Feng H., Slot-pole combinations research of Permanent-Magnet linear synchronous motor with concentrated windings, 2014 17th International Conference on Electrical Machines and Systems (ICEMS), IEEE, Hangzhou, China, pp. 1322–1325 (2014), DOI: 10.1109/ICEMS.2014.7013677.
- [19] Libert F., Soulard J., Investigation on Pole-Slot Combinations for Permanent-Magnet Machines with Concentrated Windings (2004).
- [20] Guemes J.A., Iraolagoitia A.M., Fernandez P., Donsion M.P., Comparative study of PMSM with integer-slot and fractional-slot windings, The XIX International Conference on Electrical Machines – ICEM 2010, IEEE, Rome, Italy, pp. 1–6 (2010), DOI: 10.1109/ICELMACH.2010.5608202.
- [21] Chen Z., Xing N., Ma H., Li Z., Li J., Fan C., Armature MMF and electromagnetic performance analysis of dual three-phase 10-pole/24-slot permanent magnet synchronous machine, Archives of Electrical Engineering, vol. 72, no. 1, pp. 189–210 (2023), DOI: 10.24425/aee.2023.143697.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-33886bbf-d960-4426-982e-db9202d6c6b5