Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Increasing transport volumes on Europe's inland waterways is a major reason for improving the quality and reliability of internationally important waterways. Continued navigation restrictions due to restricted draft (draught) led to the search for new design solutions. Such solutions enable navigation even under critical navigation conditions. Restricted draft is one of the most important limitations that hinder navigation, especially in the summer. The main objective of the construction of an inland vessel is to obtain a shape that will achieve optimum performance with as little resistance as possible. A shape that will be able to navigate at a limited depth. Presently, there is no clearly defined methodology as a procedure for optimising the hull. When solving theoretical problems of shipbuilding character and ship calculations, it is necessary to consider the basic theory of the ship with special regard to the latest methodological procedures of related scientific disciplines. This paper presents a methodology that considers all the basic aspects of optimisation tasks in ship design and construction.
Rocznik
Tom
Strony
59--71
Opis fizyczny
Bibliogr. 29 poz.
Twórcy
autor
- MULTI engineering services, Dunajske nabrezie 4726, 94501, Komarno, Slovak Republic
autor
- Faculty of Operation and Economics of Transport and Communication, University of Zilina, Univerzitna 1, 010 26 Zilina, Slovakia
autor
- Faculty of Operation and Economics of Transport and Communication, University of Zilina, Univerzitna 1, 010 26 Zilina, Slovakia
autor
- Stanislaw Staszic University of Applied Sciences in Pila, Polytechnic Institute, Podchorążych 10 Street, 64-920 Piła, Poland
autor
- Department of Transport and Logistics, Faculty of Technology, Institute of Technology and Business in Ceske Budejovice, Czech Republic
Bibliografia
- 1. 90th Session of the Danube Commission. 2018. Market observation for Danube navigation - results in 2017. Budapest. Danube Commission.
- 2. Aguiar F-C., J. Bentz, J-M.N. Silva, A-L. Fonseca, R. Swart, F-D. Santos, G. Penha-Lopes. 2018. “Adaptation to climate change at local level in Europe: An overview”. Environmental Science & Policy 86: 38-63. ISSN: 1462-9011. DOI: https://doi.org/10.1016/j.envsci.2018.04.010.
- 3. Beuthe M., B. Jourquin, N. Urbain, I. Lingemann, B. Ubbels. 2014. “Climate change impacts on transport on the Rhine and Danube: A multimodal approach”. Transportation Research Part D: Transport and Environment 27: 6-11. DOI: https://doi.org/10.1016/j.trd.2013.11.002.
- 4. David A., E. Madudova. 2019. “The Danube river and its importance on the Danube countries in cargo transport”. 13th International Scientific Conference on Sustainable, Modern and Safe Transport, “TRANSCOM 2019” 40: 1010-1016. 29-31 May 2019. Novy Smokovec, Slovakia.
- 5. Doll P., B. Jimenez-Cisneros, T. Oki, N.W. Arnell, G. Benito, J.G. Cogley, T. Jiang, Z.W. Kundzewicz, S. Mwakalila, A. Nishijima. 2014. „Integrating risks of climate change into water management”. Hydrol. Sci. J. 60: 4-13. DOI: 0.1080/02626667.2014.967250.
- 6. Douglas J.F., J.M. Gasiorek, J.A. Swaffield, L.B. Jack. 2005. Fluid mechanics. Fifth edition, Pearson Education Limited, Harlow. ISBN: 978-0-13-129293-2.
- 7. Esmailian E., H. Ghassemi, H. Zakerdoost. 2017. “Systematic probabilistic design methodology for simultaneously optimizing the ship hull - propeller system”. International Journal of Naval Architecture and Ocean Engineering 9(3): 246-255. ISSN: 2092-6782. DOI: https://doi.org/10.1016/j.ijnaoe.2016.06.007.
- 8. Ferreiro L.D. 1992. “The effects of confined water operations on ship performance: a guide for the perplexed”. Nav. Eng. J. 104: 69-83.
- 9. Galierikova A., J. Sosedova. 2018. “Intermodal Transportation of Dangerous Goods”. Nase More 65(3): 8-11. ISSN: 0469-6255. DOI: 10.17818/NM/2018/3.8.
- 10. Ganco M. 1983. Fluid mechanics. Bratislava: ALFA Bratislava. ISBN: 63-745-83.
- 11. Habersack H., T. Hein, A. Stanica, I. Liska, R. Mair, E. Jager, Ch. Hauer, Ch. Bradley. 2016. “Challenges of river basin management: Current status of, and prospects for, the River Danube from a river engineering perspective”. Science of The Total Environment 543(A): 828-845. DOI: https://doi.org/10.1016/j.scitotenv.2015.10.123.
- 12. Harvald S.A. 1977. “Wake and thrust deduction at extreme propeller loadings for a ship running in shallow water.” RINA Suppl. Pap. 119.
- 13. Kim D.H., J.K. Paik. 2017. “Ultimate limit state-based multi-objective optimum design technology for hull structural scantlings of merchant cargo ships”. Ocean Engineering 129: 318-334. ISSN: 0029-8018. DOI: https://doi.org/10.1016/j.oceaneng.2016.11.033.
- 14. Kudelas D. 2017. Basics of computer flow modelling and visualization. Kosice: Faculty BERG TU, Kosice.
- 15. Lackenby H. 1963. “The effect of shallow water on ship speed”. Shipbuild. Mar. Eng. 70: 446-450.
- 16. Lobanova A., S. Liersch, J.P. Nunes, I. Didovets, J. Stagl, S. Huang, H. Koch, M.R.R. Lopez, C.F. Maule, F. Hattermann, V. Krysanova. 2018. “Hydrological impacts of moderate and high-end climate change across European river basins”. Journal of Hydrology: Regional Studies 18: 15-30. ISSN: 2214-5818. DOI: https://doi.org/10.1016/j.ejrh.2018.05.003.
- 17. Macháčková A., P. Kuchta, Z. Klečková, R. Kocich, J. Szwed. 2016. “Numerical simulation of the heat treatment of the weld for steam generator”. Metalurgija 55(4): 741-744.
- 18. Molnar V. 2011. Computational Fluid Dynamics - Interdisciplinary Approach with CFD. Bratislava: STU Bratislava. ISBN: 978-80-8106-048-9.
- 19. Nouasse H., A. Doniec, G. Lozenguez, E. Duviella, P. Chiron, B. Archimede, K. Chuquet. 2016. “Constraint satisfaction problem based on flow graph to study the resilience of inland navigation networks in a climate change context”. IFAC-PapersOnLine 49: 331-336. DOI: https://doi.org/10.1016/j.ifacol.2016.07.626.
- 20. Raven H. 2012. “A computational study of shallow-water effects on ship viscous resistance”. Proceedings of the 29th Symposium on Naval Hydrodynamics. Gothenburg.
- 21. Raven, H. 2016. “A new correction procedure for shallow-water effects in ship speed trials”. Proceedings of the 2016 PRADS Conference, Copenhagen.
- 22. Rotteveeel E., R. Hekkenberg, A. Ploeg. 2017. “Inland ship stern optimization in shallow water”. Ocean Engineering 141: 555-569. ISSN: 0029-8018.
- 23. Rotteveel E., R. Hekkenberg. 2015. “The influence of shallow water and hull form variations on inland ship resistance”. Proceedings of the 12th International Marine Design Conference. “IMDC 2015”. 11-14 May 2015. Tokyo, Japan.
- 24. Saha G.K., K. Suzuki, H. Kai. 2004. “Hydrodynamic optimization of ship hull forms in shallow water”. J. Mar. Sci. Technol 9: 51-62. DOI: 10.1007/s00773-003-0173-3.
- 25. Schlichting O. 1934. Ship's resistance to limited water depth: Resistance of ships to shallow water. Jahrb. der Schiffbautech 35: 127.
- 26. Sun H., O.M. Faltinsen. 2012. “Hydrodynamic forces on a semi-displacement ship at high speed”. Applied Ocean Research 34: 68-77. ISSN: 0141-1187. DOI: https://doi.org/10.1016/j.apor.2011.10.001.
- 27. Tuck E. 1978. “Hydrodynamic problems of ships in restricted waters”. Annu. Rev. Fluid Mech 10: 33-46. DOI: 10.1146/annurev.fl.10.010178.000341.
- 28. Wang X.M., X.L. Wu, W.Q. Zhou. 2019. “Analysis of oxygen enriched combustion characteristic of 350 MW utility boiler based on computational fluid dynamics”. Metalurgija 58(3-4): 223-227.
- 29. Zhao L-e. 1984. “Optimal ship forms for minimum total resistance in shallow water”. Schr. Schiffbau. DOI: 0.15480/882.930.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-33835798-b2f2-4c6a-866d-3e0af2f8eec6