Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Background: Consumer shopping behavior has been widely studied, but little attention has been given to the practice of returning goods across generations. This study addresses this gap by examining intergenerational differences in return behavior. Methods: In 2023, surveys were conducted among Polish respondents using the computer-assisted web interview (CAWI) technique. The study investigated generational behavioral patterns and factors influencing return habits. The chi-square test assessed the representativeness of the sample. Results: Age significantly affects the likelihood and reasons for returning goods. Individuals under 18 are less likely to return products, possibly due to limited shopping experience and fewer impulsive purchases. Respondents over 27 frequently cited dissatisfaction with material quality, suggesting that older consumers have more specific expectations. The 25–34 age group exhibited the highest return rate, reflecting generational differences, with Gen Z showing greater tolerance for keeping products that do not fully meet expectations. Conclusions: Retail practices should account for generational differences in returns. Policies could include simplified processes for Baby Boomers, practical solutions for Generation X, flexible and hassle-free returns for Millennials, and seamless, try-before-you-buy options for Generation Z, thereby enhancing customer satisfaction and loyalty.
Wydawca
Czasopismo
Rocznik
Tom
Strony
419--430
Opis fizyczny
Bibliogr. 34 poz., rys., wykr.
Twórcy
autor
- Department of Logistics and Process Engineering, Faculty of Management, Collegium of Logistics, University of Information Technology and Management in Rzeszów, Poland
autor
- Department of Logistics and Process Engineering, Faculty of Management, Collegium of Logistics, University of Information Technology and Management in Rzeszów, Poland
autor
- Department of Logistics and Process Engineering, Faculty of Management, Collegium of Logistics, University of Information Technology and Management in Rzeszów, Poland
Bibliografia
- 1. Alcántara-Pilar J. M., Del Barrio-García S., Porcu L., 2013, A cross-cultural analysis of the effect of language on perceived risk online, Computers in Human Behavior, 29 (3), 596–603. https://doi.org/10.1016/j.chb.2012.10.021
- 2. Bechwati N. N., Siegal W. S., 2005, The impact of the prechoice process on product returns, Journal of Marketing Research, 42 (3), 358–367. https://doi.org/10.1509/jmkr.2005.42.3.358
- 3. Boada M., Burneo D., Morocho F., Gutiérrez J., 2023, Relationship between consumer insights and purchase patterns across different generations: A quantitative approach, Open Access Library Journal, 10: e10867
- 4. Bonifield C., Cole C., Schultz R. L., 2010, Product returns on the Internet: A case of mixed signals? Journal of Business Research, 63 (9–10), 1058–1065. https://doi.org/10.1016/j.jbusres.2008.12.009
- 5. Bellman L.M., Teich I., Clark S.D., 2009, Fashion accessory buying intentions among female millennials, Review of Business, 30(1), 46–57.
- 6. Chicca J., Shellenbarger T., 2018, Connecting with Generation Z: Approaches in nursing education, Teaching and Learning in Nursing, 13 (3), 180–184. https://doi.org/10.1016/j.teln.2018.03.008
- 7. Chiu C., Chang C., Cheng H., Fang Y., 2009, Determinants of customer repurchase intention in online shopping, Online Information Review, 33 (4), 761–784. https://doi.org/10.1108/14684520910985710
- 8. Engel C., Bell R., Meier R., Martin M., Rumpel J., 2011, Young consumers in the new marketing ecosystem: An analysis of their usage of interactive technologies, Academy of Marketing Studies Journal, 15, 23–44.
- 9. Engelen A., Brettel M., 2011, Assessing cross-cultural marketing theory and research, Journal of Business Research, 64 (5), 516–523.
- 10. Friedmann E., Lowengart O., 2018, The context of choice as boundary condition for gender differences in brand choice considerations, European Journal of Marketing, 52 (5/6), 1280–1304. https://doi.org/10.1108/EJM-08-2017-0524
- 11. Frost D., Goode S., Hart D., 2010, Individualist and collectivist factors affecting online repurchase intentions, Internet Research, 20 (1), 6–28. https://doi.org/10.1108/10662241011020815
- 12. Griffis S. E., Rao S., Goldsby T. J., Niranjan T. T., 2012, The customer consequences of returns in online retailing: An empirical analysis, Journal of Operations Management, 30 (4), 282–294. https://doi.org/10.1016/j.jom.2012.02.002
- 13. Hjort K., Lantz B., 2016, The impact of returns policies on profitability: A fashion e-commerce case, Journal of Business Research, 69 (11), 4980–4985. https://doi.org/10.1016/j.jbusres.2016.04.064
- 14. Hjort K., Larsson, J., 2009, Avoiding returns in distant selling through differentiating customers and their service delivery, Proceedings of the 21st Annual Conference for Nordic Researchers in Logistics, 2009, Jönköping, Sweden, 349–364.
- 15. Hjort K., 2010, Returns Avoidance and Gatekeeping to Enhance E-commerce Performance. Report/Department of Logistics and Transportation, Chalmers University of Technology, ISSN 1654–9732
- 16. Kuo Y.-F., Wu C.-M., Deng W.-J., 2009, The relationships among service quality, perceived value, customer satisfaction, and post-purchase intention in mobile value-added services, Computers in Human Behavior, 25 (4), 887–896. https://doi.org/10.1016/j.chb.2009.03.003
- 17. Mahajan Y., 2020, Review of buy orders and returns from Amazon.in in India: Implications for Amazon and its vendors, Journal of Xi'an University of Architecture & Technology, Volume XII, Issue VI, 2020, ISSN No: 1006-7930
- 18. Ngo M. T., Bui T. K. T., Tran B. H., 2024, Determinants on green purchasing behavior of generation Y: Empirical evidence in Can Tho city, CTU Journal of Innovation and Sustainable Development, 16 (2), 10–24. https://doi.org/10.22144/ctujoisd.2024.287
- 19. Portolese Dias L., 2003, Generational buying motivations for fashion, Journal of Fashion Marketing and Management: An International Journal, 7 (1), 78–86. https://doi.org/10.1108/13612020310464386
- 20. parcelLab, 2022, US returns study: Key insights and trends, https://parcellab.com/research/us-returns-study-2022/
- 21. Serravalle F., Vannucci V., Pantano E., 2022, “Take it or leave it?”: Evidence on cultural differences affecting return behaviour for Gen Z, Journal of Retailing and Consumer Services, 66, 102942. https://doi.org/10.1016/j.jretconser.2022.102942
- 22. Sharma H., Srivastav P., 2023, Purchase preference of Generation Z: A comparison with Gen Y and Gen X, Business Administration, 5 (4). https://doi.org/10.36948/ijfmr.2023.v05i04.5767
- 23. Sonia, 2024, Consumer behavior in online shopping: A comparative analysis of generational differences, International Journal for Research Publication and Seminar, 15 (3), 136–141. https://doi.org/10.36676/jrps.v15.i3.1454
- 24. Straus S. G., McGrath J. E., 1994, Does the medium matter? The interaction of task type and technology on group performance and member reactions, Journal of Applied Psychology, 79 (1), 87–97. https://doi.org/10.1037/0021-9010.79.1.87
- 25. Samo A., Rani F., Shaikh H., Bhutto M., Samo F., Bhutto T., 2019, Revealing youngsters’ impulsive buying behavior through hedonic shopping motivations, European Journal of Business and Management, 11, 110–119. https://doi.org/10.7176/EJBM
- 26. Tsai H.-T., Huang H.-C., 2007, Determinants of e-repurchase intentions: An integrative model of quadruple retention drivers, Information & Management, 44 (3), 231–239. https://doi.org/10.1016/j.im.2006.11.006
- 27. Valentine D.B., Powers T.L., 2013, Online product search and purchase behavior of Generation Y, Atlantic Marketing Journal, 2, 6.
- 28. Wu L.-Y., Chen K.-Y., Chen P.-Y., Cheng S.-L., 2014, Perceived value, transaction cost, and repurchase-intention in online shopping: A relational exchange perspective, Journal of Business Research, 67 (1), 2768–2776. https://doi.org/10.1016/j.jbusres.2012.09.007
- 29. Widhiasthini N.W., Suryawati P.I., Pika P.A., 2020, Bakery product choices and behavior change for different generations, International Research Journal of Management, IT and Social Sciences, 7, 188–195.
- 30. Zjawin J., 2018, Purchasing behavior of generations of consumers in the light of technological development, Marketing i Zarządzanie, 53, 233–240. https://doi.org/10.18276/miz.2018.53-20
- 31. Wygodne Zwroty, 2024, December 4, W jaki sposób dobra polityka zwrotów wpływa na zwiększenie konwersji w sklepie internetowym?, E-commerce Growth.
- 32. https://www.atomstore.pl/jak-polityka-zwrotow-wplywa-na-konwesje (accessed 03/06/2025)
- 33. Marks & Spencer, n.d., Returns information, https://www.marksandspencer.com/pl/help#Returns (accessed 03/06/2025)
- 34. https://xyz.pl/zakupy-przez-internet-darmowe-zwroty/ (accessed 20/05/2025)
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2026).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3380c074-8145-46ca-afb0-3ae9023cb622
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.