PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Delay analysis of ring resonator-based beam-forming network in z-domain

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
During the next generation of wireless cellular networks, the millimeter-wave (mm-wave) spectrum will bring new opportunities for exceptionally high data transfer speeds and extensive network connectivity. Millimeter waves, on the other hand, are subject to a significant loss of propagation, which is the most significant impediment. A beneficial solution to this difficulty, which can be overcome, is to use a beam-forming system that consists of many antennas. The purpose of this study is to provide a concept for an integrated photonic beam-forming system that utilises multiple ring resonators for a 1 × 4 phase array antenna operating in the Ka-Band frequency range. The waveguide technology is the foundation for a signal that operates at 28 GHz. It is through the use of the optical ring resonator that the actual time delay line may accomplish its goal. The suggested method can be implemented as a variable true time delay (TTD) line to change the radiation angle of phase array antennas (PAA). The main lobe radiated by the PAA can be directed squint-free between the angles from -28° to +28°. The mathematical analysis and design of the beam producing the structure are presented. Following that, delays of 650 ps, 350 ps, and 250 ps could be produced with coupling coefficients of κ=0.5, κ=0.7, and κ=0.9, respectively, and the associated phase shifts were 0.469π, 0.146π, and 0.387π.
Rocznik
Strony
art. no. e150184
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
  • Microwave Photonics Laboratory, Department of Electronics Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad Jharkhand-826004, India
  • Microwave Photonics Laboratory, Department of Electronics Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad Jharkhand-826004, India
autor
  • Shri Phaneshwar Nath Renu Engineering College, Araria, Bihar 854318, India
Bibliografia
  • [1] Minasian, R. A. Ultra-wideband and adaptive photonic signal processing of microwave signals. IEEE J. Quantum Electron. 52, 1-13 (2016). https://doi.org/10.1109/JQE.2015.2499729.
  • [2] Minasian, R. A., Chan, E. H. W. & Yi, X. Microwave photonic signal processing. Opt. Express 21, 22918-22936 (2013). https://doi.org/10.1364/OE.21.022918.
  • [3] Yi, X., Chew, S. X., Song, S., Nguyen, L. & Minasian, R. A. Integrated microwave photonics for wideband signal processing. Photonics 4, 46 (2017). https://doi.org/10.3390/photonics4040046.
  • [4] Minasian, R. A. Photonic signal processing of microwave signals. IEEE Trans. Microw. Theory Tech. 54, 832-846 (2006). https://doi.org/10.1109/TMTT.2005.863060.
  • [5] Nguyen, T. A., Chan, E. H. W. & Minasian, R. A. Instantaneous high-resolution multiple-frequency measurement system based on frequency-to-time mapping technique. Opt. Lett. 39, 2419-2422 (2014). https://doi.org/10.1364/OL39002419.
  • [6] Sadhu, B. et al. A 28 GHz 32-Element Phased-Array Transceiver IC with Concurrent Dual Polarized Beams and 1.4 Degree Beam-Steering Resolution for 5G Communication. in 2017 IEEE International Solid-State Circuits Conference (ISSCC) 3373-3391 (IEEE, 2017). https://doi.org/10.1109/JSSC.2017.2766211.
  • [7] Nadeem, M. D. & Raghuwanshi, S. K. Optimised design & analysis of high gain 3×3 square patch array antennas with six ports for airborne application in S-band. J. Electromagn. Waves Appl. 36, 2419-2434 (2022). https://doi.org/10.1080/09205071.2022.2080592.
  • [8] Aluigi, L., Orecchini, G. & Larcher, L. A 28 GHz Scalable Beamforming System for 5G Automotive Connectivity: An Integrated Patch Antenna and Power Amplifier Solution. in 2018 IEEE MTT-S International Microwave Workshop Series on 5G Hardware and System Technologies (IMWS-5G) 1-3 (IEEE, 2018). https://doi.org/10.1109/IMWS-5G.2018.8484325.
  • [9] Akiyama, T., Ando, T. & Hirano, Y. Fourier Transform Optically Controlled Phased Array Antenna. in 2013 18th OptoElectronics and Communications Conference held jointly with 2013 International Conference on Photonics in Switching WO4_4 (OSA, 2013). https://doi.org/10.1364/OECC_PS.2013.WO4_4.
  • [10] Ortega, B., Mora, J. & Chulia, R. Optical beamformer for 2-D phased array antenna with subarray partitioning capability. IEEE Photon. J. 8, 1-9 (2016). https://doi.org/10.1109/JPHOT.2016.2550323.
  • [11] Li, Y., Ghafoor, S., Satyanarayana, K., El-Hajjar, M. & Hanzo, L. Analogue wireless beamforming exploiting the fiber-nonlinearity of radio over fiber-based C- RANs. IEEE Trans. Veh. Technol. 68, 2802-2813 (2019). https://doi.org/10.1109/TVT.2019.2893589.
  • [12] Jung, B. M. & Yao, J. A two-dimensional optical true time-delay beamformer consisting of a fiber Bragg grating prism and switch-based fiber-optic delay lines. IEEE Photon. Technol. Lett. 21, 627-629 (2009). https://doi.org/10.1109/LPT.2009.2015275.
  • [13] Sancho, J. et al. Integrable microwave filter based on a photonic crystal delay line. Nat. Commun. 3, 1075 (2012). https://doi.org/10.1038/ncomms2092.
  • [14] Kumar, S. N. & Raghuwanshi, S. K. Demonstration of Highly Steerable Beamforming System Incorporating a Waveguide of Spatially Distributed Fiber Bragg Grating. in 2019 6th International Conference on Signal Processing and Integrated Networks (SPIN) 367-370 (IEEE, 2019). https://doi.org/10.1109/SPIN.2019.8711766.
  • [15] Kumar, R., Raghuwanshi, S. K. & Nadeem, D. Chirped fiber grating and specialty fiber based multiwavelength optical beamforming network for 1X8 phased array antenna in S-band. Optik 243, 167044 (2021). https://doi.org/10.1016/j.ijleo.2021.167044.
  • [16] Kumar, R. & Raghuwanshi, S. K. photonic generation of multiple shapes and sextupled microwave signal based on polarization modulator. IEEE Trans. Microw. Theory Tech. 69, 3875-3882 (2021). https://doi.org/10.1109/TMTT.2021.3076996.
  • [17] Kumari, S. &, Prince, S. Photonic beamforming incorporating ring resonator based on silicon-on-insulator waveguide technology. Silicon 14, 8869-8879 (2022). https://doi.org/10.1007/s12633-022-01684-w.
  • [18] Moslehi, B., Goodman, J. W., Tur, M. & Shaw, H. J. Fiber-optic lattice signal processing. Proc. IEEE 72, 909-930 (1984). https://doi.org/10.1109/PROC.1984.12948.
  • [19] Rabus, D. G. Ring Resonators: Theory and Modeling. Integrated Ring Resonators. (Springer Berlin Heidelberg, 2007).
  • [20] Kumar, R., Singh, Y., Raghuwanshi, S. K., Chandra, S. & Nadeem, D. Delay and Dispersion Investigation of Optical Components for Microwave Photonic Filter. in VLSI, Microwave and Wireless Technologies. Lecture Notes in Electrical Engineering (eds. Mishra, B. & Tiwari, M.) vol. 877 (Springer, 2023). https://doi.org/10.1007/978-981-19-0312-0_69.
  • [21] Kumari, S. & Prince, S. Photonic integrated cmos-compatible true time delay based broadband beamformer. Opt. Quant. Electron. 55, 1198 (2023). https://doi.org/10.1007/s11082-023-05492-3.
  • [22] Roeloffzen, C. G. H. et al. Integrated photonic beamformer employing continuously tunable ring resonator-based delays in CMOS-compatible LPCVD waveguide technology. Proc. SPIE 7135, 71341K (2008). https://doi.org/10.1117/12.803719.
  • [23] Nadeem, D. et al. Design and analysis of photonic beam forming system using ring resonator for 1 × 4 phase array antenna in Ka-Band. Proc. SPIE 12429, 124290S (2023). https://doi.org/10.1117/12.2648280.
  • [24] Nadeem, D. et al. Modeling of quad ring resonator for tunable delay line in z-domain analysis. Proc. SPIE 12429, 114290N (2023). https://doi.org/10.1117/12.2648319.
  • [25] Nadeem, M. D., Raghuwanshi, S. K. & Kumar, R. Efficient photonics beam forming system incorporating super structure fiber Bragg grating for application in Ku band. Opt. Fiber Technol. 80, 103436 (2023). https://doi.org/10.1016/j.yofte.2023.103436.
  • [26] Nadeem, D., Kumar, R., Raghuwanshi, S. K. & Kumar, S. Advanced photonic-assisted antenna array: efficient beam steering system for radar application. Proc. SPIE 12890, 128900J-1 (2024). https://doi.org/10.1117/12.2691273.
  • [27] Danish, N., Sanjeev, K. R. & Yadav, R. K. Recent advancement on photonic feeding antennas for microwave beam steering. I-Manager’s J. Commun. Eng. Systems (JCS) 8, 10 (2019). https://doi.org/10.26634/jcs.8.1.15888.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-337dfaa8-f7b2-45a9-8d67-c6cde9853abf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.