PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of adding CO2 to the axis of natural gas combustion flames on CO and NOx concentrations in the combustion chamber

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of experiments on the effect of carbon dioxide addition during natural gas air combustion on the concentrations of CO and NOx in the combustion chamber. Numerical simulations were also performed using the Chemkin-Pro program. As part of the presented experiments, an innovative method of introducing carbon dioxide through the central nozzle of a kinetic burner was tested. This technique allows CO2 to be fed directly into the high-temperature zone, thus not hindering the mixing of the fuel with the oxidizer. The tests were carried out for an excess combustion air ratio of λ=1.1, 1.15 and 1.2, respectively, during the addition of CO2 to 15% vol. of oxidizing mixture (air + carbon dioxide). From combustion gas analyses made at a distance of 740mm from the burner outlet in the furnace axis and 20 and 40 mm from the axis, it was found that combustion chamber CO concentrations depended on the amount of CO2 introduced, the distribution of CO2 in the combustion chamber cross-section associated with the CO2 addition method and the excess air ratio. The highest CO concentrations were only noted in the combustion chamber axis with a considerable fraction of added CO2. Based on the computations and experiments it has been confirmed that diluting combustion gas with CO2 delivers a reduction in NOx concentration.
Słowa kluczowe
Rocznik
Strony
202--210
Opis fizyczny
Bibliogr. 17 poz., wykr.
Twórcy
autor
  • AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Krakow, Poland
autor
  • AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Krakow, Poland
autor
  • Czestochowa University of Technology, 19 Armii Krajowej Street, 42-200 Czestochowa, Poland
Bibliografia
  • [1] P. Glarborg, L. B. Bentzen, Chemical effect of a high CO2 concentration in oxy-fuel combustion of methane, Energy & Fuels 22 (2008) 291–296.
  • [2] J. Biet, J. L. Delfau, L. Pillier, C. Vovelle, Influence of CO2 and H2 on the chemical structure of a premixed lean, methane – air flame, in: Proceedings of the 3rd European Combustion Meeting ECM 2007, Chania, Crete, Greece, 2007.
  • [3] A. Matynia, J. L. Delfau, L. Pillier, C. Vovelle, Comparative study of the influence of CO2 and H2O of chemical structure of lean and rich methane –air flames at atmospheric pressure, Combustion, Explosion and Shock Waves 45 (2009) 635–645.
  • [4] K. Qiu, A. C. S. Hayden, Increasing the efficiency of radiant burners by using polymer membranes, Applied Energy 86 (2009) 349–354.
  • [5] M. B. Toftegaard, J. Brix, P. A. Jensen, P. Glarborg, A. D. Jensen, Oxy-fuel combustion of solid fuels, Prog. Energy Combust. Sci. 36 (2010) 581–625.
  • [6] L. Wu, S. Chen, J. Luo, Effect of atmosphere on volatile emission characteristic in oxy-fuel combustion, Energy and Power Engineering 5 (2013) 135–139.
  • [7] R. Zhao, H. Liu, H. Hu, X. Zhong, Z.Wang, Z. Xu, J. Qiu, Experimental and modeling study of NO emission under high CO2 concentration, Science China Technological Sci. 53 (2010) 3275–3283.
  • [8] K. K. Wu, Y. C. Chang, C. H. Chen, Y. D. Chen, High efficiency combustion of natural gas with 21–30% oxygen enriches air, Fuel 89 (2010) 2455–2462.
  • [9] Z. Kalicka, W. Jerzak, E. Kawecka Cebula, The effect of combustion of natural gas with 21%–29% O2/CO2/N2 mixtures on emission of carbon monoxide, Archives of Environmental Protection 39 (4) (2013) 93–103.
  • [10] H. Guo, J. Min, C. Galizzi, D. Escudie, F. Baillot, A numerical study on the effects of CO2/N2/Ar addition to air on liftoff of a laminar CH4/air diffusion flame, Combust. Sci. Technol. 182 (2010) 1549–1563.
  • [11] T. L. Cong, E. Bedjanian, P. Dagaut, Oxidation of ethylene and propene in the presence of CO2 and H2O: Experimental and detailed kinetic modeling study, Combust. Sci. Technol. 182 (2010) 333–349.
  • [12] J. M. Anderlohr, A. P. da Cruz, R. Bounaceur, F. Battin-Leclerc, Thermal and kinetic impact of CO, CO2, and H2O on the postoxidation of IC engine exhaust gases, Combust. Sci. Technol. 182 (2010) 39–59.
  • [13] F. S. Liu, H. S. Guo, G. J. Smallwood, O. L. Gulder, The chemical effects of carbon dioxide as an additive in an ethylene diffusion flame: Implications for soot and NOx formation, Combust. Flame 125 (2001) 778–787.
  • [14] M. Abian, J. Gimenez-Lopez, R. Bilbao, M. U. Alzueta, Effect of different concentration levels of CO2 and H2O on the oxidation of CO: Experiments and modeling, Proc. Combust. Inst. 33 (2011) 317–323.
  • [15] J. Park, D. J. Hwang, K. T. Kim, S. I. Lee, S.-B. and. Keel, Evaluation of chemical effects of added CO2 according to flame location, Int. J. Energy Res. 28 (2004) 551–565.
  • [16] J. Gimenez-Lopez, A. Millera, R. Bilbao, M. U. Alzueta, Influence of stoichiometry and residence time on the oxidation of natural gas in a CO2 atmosphere, in: Fifth European Combustion Meeting 2011, Cardiff, Wales, UK, 2011.
  • [17] J. D. Miller, C. T. Bowman, Mechanism and modeling of nitrogen chemistry in combustion, Progress in Energy and Combustion Science 15 (1989) 287–338.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-337b6cc6-a931-4379-82a1-67faf1665241
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.