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ABSTRACT

The purpose of the paper is to create a method for studying nonlocal stability in the mean and in the mean square 
of the ship, positioned on the beam of an intensive wind–waves mode, which is based on the use of the correlation 
theory of random functions close to continuous Markov processes. With the help of this method and the integral 
formula of event probability, a method for determining the reliability indicator of the ship in respect of the existing 
wind–waves excitations of the operating area is formed. An example of investigating the nonlinear motion of the ship, 
determining its local and nonlocal stability in the first approximation of the theory of considered random functions, 
is given. Such approximation uses correlation theory with models of acting excitations represented by the generalised 
derivatives of the Wiener process. Moreover, special attention is paid to reflecting the connection of the proposed 
methods for investigating the ship stability under constantly acting random excitations with the traditional methods 
of studying ship stability at small and large inclinations. The established connection defines the proposed methods as 
a development of the traditional methods of ship stability deterministic theory during the transition to its formation 
in the class of random functions, with the addition to these methods of the missing link of determining the level 
of reliability of ships towards the acting wind–waves excitations of the operation area.
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INTRODUCTION

This work is devoted to the presentation of methods 
for determining the probabilistic characteristics of ships’ 
nonlinear motion processes and their stability based on 
the application of the methods of random functions close 
to continuous Markov random processes. First, the most 
complete consideration of the application of such methods 
to solving problems of determining the probabilistic 
characteristics of ship motion and the stability of motion 
has already been given in the monograph by the current 
paper’s author [5]. In this monograph, the Fokker–Planck–
Kolmogorov equation and the kinetic equations of a more 
complex structure are used to determine the probability 

densities and characteristic functions of nonlinear ship 
motion. The characteristics of the amplitudes and phases 
of nonlinear motion and parametrically excited random 
oscillations of the ships are studied as well. It is shown that 
a significant extension of the method of random amplitudes 
and phases is the method of statistical moments. Using this 
method, the investigation of ship nonlinear motion stability 
is effective not only at small, but also at large inclinations. 
Subsequent development of the proposed method is only 
partially described in [6–8]. 

In this work, the results obtained in [5–8] are combined 
into a united complex of the investigation of ship stability 
and reliability under constantly acting random wind–
waves excitations. The first approximation of the developed 
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theory, which operates with the first two statistical moments 
of random functions, is presented. For this, the concepts 
of a ship’s local and nonlocal stability in the mean and in 
the mean square are introduced. The criteria of these types 
of stability and the relationship between them are given. 
Particular attention is paid to the connection of the proposed 
methods with traditional methods of studying the stability 
of ships and to determining their reliability indicators under 
the wind–waves action of the operation area.

FEATURES OF TRADITIONAL METHODS 
OF SHIP STABILITY THEORY

The study of ship stability under the action of stationary 
applied heeling moment is presented in Fig. 1. This figure 
shows that the local stability of the equilibrium position 
of the ship at the roll angle θS under the action of heeling 
moment Mh is determined by the method of additional small 
perturbations, and the nonlocal stability of the ship under 
the gradual increase in the heeling moment from the initial 
equilibrium position θ = 0 in calm water is determined by 
the region of the existence of real solutions of the equation 
of acting moments realised in the interval [-Mhmax, Mhmax].

Fig. 1. Local and nonlocal (maintaining position of ship in the neighbourhood 
of equilibrium position in calm water θ  0) stability when stationary heeling 

moment is applied to the ship

The investigation of ship stability under the action of 
dynamically applied heeling moment is shown in Fig. 2. 
This figure determines that, under the action of dynamically 
applied heeling moment, the region of nonlocal stability 
of the ship (maintaining the position of the ship in the 
neighbourhood of the equilibrium position in calm water 
θ  0) is determined by the region of the existence of real 
solutions of the equation of works (energies) of the operating 
moments.

Thus, the traditional study of ship stability and 
determination of the boundaries Гs and Гd of regions Ωs and 
Ωd of its nonlocal stability under the action of stationary and 
nonstationary forces uses:
– nonlinear equation of roll inclinations of ship under the 

action of heeling moment
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– equation of ultimate ship position under the stationary 
action of external forces
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– equation of the maximal possible equality of works of 
heeling and righting moments (energies of external forces 
and potential resources of ship) under the dynamic action 
of heeling moment
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Fig. 2. Nonlocal stability of ship under the action of dynamically applied 
heeling moment

METHOD FOR SOLVING THE PROBLEM 
OF SHIP STABILITY IN STORM AS 

PROBLEM OF LOCAL AND NONLOCAL 
STABILITY IN THE MEAN SQUARE

GENERAL POSITIONS

The method uses:
– stochastic nonlinear differential equations simulating the 

processes of wind–waves actions and ship motion, which 
are built on the basis of representing the acting forces by 
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segments of multi-dimensional Taylor series in degrees of 
the displacements and velocities of the ship and in degrees 
of the kinematic characteristics of the wind–waves fields 
in the neighbourhood of the ship’s equilibrium position 
in calm water [5];

– presentation of initial acting excitations in stochastic 
models of external wind–waves actions in the form of 
“white noise” in the sense of Stratonovich [9], i.e., in the 
form of random processes with finite power values;

– conditions of the Germaidze–Krasovsky theorem on the 
stability of dynamic systems under constantly acting 
excitations that are bounded in the mean [3].

E QUAT ION S  F OR  T H E  PROBA BI L I S T IC 
CHARACTERISTICS OF THE SHIP MOTION

Under the stated preconditions, the system of nonlinear 
differential equations of ship motion under the action of 
wind and waves is written in the following general form [5]:
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where ψ(t) is the vector of generalised derivatives of the Wiener 
process (“white noise”); X(t) is the vector of the processes of 
wind–waves actions; Y(t) is the vector of the ship’s motion 
processes.

To determine the probabilistic characteristics of ship 
motion processes Y(t) based on the stochastic equations 
(4) of the motion of the considered dynamic system “ship-
excited media”, an infinite system of equations for statistical 
moments is constructed. The construction of the system is 
carried out either using the equation for the characteristic 
function, or using the Fokker–Planck–Kolmogorov equation 
[5]. The presence of nonlinearities in equations of motion 
(4) leads to the appearance in the subsystems of equations 
for statistical moments of lower orders 1 ... m statistical 
moments of higher orders m + 1 ... n. If we restrict ourselves 
to considering statistical moments no higher than the order of 
p, this circumstance will require the closure of the considered 
subsystems of equations. The closure is carried out on 
the basis of introducing the hypothesis about the nature of the 
distribution law of the processes under consideration. This can 
be the normal distribution when the problem is considered 
within the framework of the correlation theory. Under fuller 
use of the mentioned positions of the Germaidze–Krasovsky 
theorem, it is the beta distribution, the Pearson distribution 
of type I, etc. [8].

In a first approximation, the approximation of the 
correlation theory of random functions, the closure of the 
considered subsystems is carried out by expressing the 
statistical moments of higher orders through the statistical 
moments of lower orders using relations between the moments 
of the normal distribution. As a result, the following system 
of nonlinear differential equations is formed:
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where α1(t) is the vector of statistical moments of the first 
order, i.e., the vector of the expected values of the processes 
of motion of the dynamic system “ship–environment”; μ2(t) is 
the vector of second-order central moments, which includes 
variances (dispersions) and mutual correlation moments 
of the dynamic system processes; G1(t) and G2(t) are the 
vectors of the first- and second-order intensity coefficients 
characterising the average values and average powers of 
the acting excitations (in limited cases, these vectors are 
represented by random functions with non-differentiable 
realisations, by “white noise” ψ(t)).

Compared to the characteristic temporary constants of 
the ship, such as the period of its free oscillations and the 
time of their relaxation, the storm develops very slowly, in 
a quasi-stationary way. Due to the quasi-stationary nature 
of the random wind–waves processes acting on the ship in 
the storm, the system of differential equations for statistical 
moments (5) is transformed into the following system of 
nonlinear algebraic equations:
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The solution of the system of algebraic equations (7)–(8) for 
given intensities of external excitations G1

(0), G2
(0) determines 

the quasi-stationary mode of the ship motion with expected 
values α1

(0) and statistical moments of second-order μ2 (0).
The solution to the system of equations (7)–(8) is found 

using nonlinear programming methods [1], which are 
applied in the process of solving the following problem 
of unconstrained minimisation of the objective function:
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for fixed values of  G1
(0), G2

(0) and variations of the independent 
variables α1

(0), μ2 (0).

RESEARCHING SHIP MOTION MODES STABILITY

If, in the formation of subsystems of equations for statistical 
moments, we restrict ourselves to considering statistical 
moments of order no more than p, then the corresponding 
stability investigation will be called the investigation of 
p-stability [2]. In this case, local and nonlocal p-stability 
should be distinguished.
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In the first approximation, the study of p-stability is 
carried out in the framework of the correlation theory of 
random functions, which operates with two types of statistical 
moments: the first and the second orders. In this case p = 2.

In the investigation of local stability of this type, small 
perturbations are introduced into the quasi-stationary mode 
of ship motion under consideration, and statistical moments 
α1

(0), μ2
(0) acquire additional increments Δα1(t) and Δμ2(t).

The values of the additional increments of the moments 
Δα1(t) and Δμ2(t) are determined by the solution of the 
following system of equations:
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For this system of differential equations, the roots λil, 
i = 1,2; l = 1, 2, 3, ..., N of the characteristic equation are 
determined:

(12)

In accordance with Lyapunov theory [4], the quasi-
stationary motion of the ship, determined by the probabilistic 
characteristics α1

(0), μ2
(0), is stable if the real parts of the roots 

of the characteristic equation (12) are negative, i.e. Re [λil] < 0.
According to the accepted terminology [2], if the solution 

of the subsystem of equations for expected values (5) satisfies 
the noted Lyapunov stability requirements, then the solution 
of the original differential equations (4) is called stable in the 
mean. Correspondingly stable in the mean is the process of the 
ship’s motion. If the noted stability requirements according 
to Lyapunov are satisfied for the solution of the equation of 
the second-order statistical moments (6), then the solution 
of the original differential equations (4) is called stable in 
the mean square. From stability in the mean square follows 
stability in the mean [2]. Obviously, in all the considered 
cases, the local stability of the quasi-stationary modes of 
ship motion is meant.

For investigation of the nonlocal stability, a ship that 
is locally stable in the equilibrium position in calm 
water at θ = 0 is considered. The nonlocal stability of this 
equilibrium position of the ship under storm conditions 
can be investigated by gradually increasing the intensities 
of the existing wind–waves excitations in the ship motion 
equations (4). Obviously, such increase of excitations without 
the loss of ship stability, as in the traditional theory of ship 
stability represented by equations (1)–(3), can be realised only 
in the region of the existence of the real solutions of equations 
(7)–(8) for statistical moments. In this region, the kinematic 
characteristics of the ship movement are represented by 
surfaces having extremes. Therefore, the limiting values of 
real solutions and, correspondingly, the boundary Γ of the 

region Ω of ship nonlocal stability will be at the extrema of 
these surfaces.

In this regard, the boundary Г1 of the region Ω1 of nonlocal 
stability in the mean of ship equilibrium position θ  0 as the 
boundary of the stability region of the average roll angle α1 is 
determined using the necessary condition for the extremum 
of the surface Q1, presented in the form
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The second main characteristic of the ship roll motion is 
the variance of the roll oscillations μ2. Therefore, the boundary 
Г2 of the region Ω2 of nonlocal stability in the mean square 
of the ship is found using the necessary condition for the 
extremum of the surface Q2:
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In the sequence of increasing intensities of the acting wind 
excitations G1

(0), the boundary Г2 is determined by solving 
the corresponding sequence of nonlinear programming tasks 
with the objective function
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under variations of the independent variables α1
(0), μ2

(0) 
and G2

(0).
It was shown in [5,6] that the regions of nonlocal stability 

Ω1, Ω2 and their boundaries Г1, Г2 should be considered not 
only in the space of kinematic characteristics α1, μ2, but also 
in the space of the parameters of the excitations G1, G2.

If the main parameters of the acting wind–waves excitations 
are the average wind velocity V, significant wave height H1/3 
and average period of sea T, then the nonlocal stability regions 
Ω1, Ω2 and their boundaries Г1, Г2 should be considered as 
functions of the variables V, H1/3, and T. Such functions are 
determined as a result of solving a sequence of nonlinear 
programming tasks for the objective function (15).

In the general case, depending on the structure of the 
initial nonlinear ship motion equations, in the regions Ω1, 
Ω2 of nonlocal stability defined by the boundaries Г1, Г2 
of real solutions of the equations for statistical moments, 
locally unstable ship motion modes may appear. Therefore, 
a generalised approach to the investigation of the stability 
of ship nonlinear motion processes should include not only 
a search for the boundaries of real solutions of the equations 
for statistical moments, but also a check of the local stability of 
solutions within these regions. This approach is implemented 
through a joint investigation of the local and nonlocal 
stability of the ship at the stages of increasing the intensity 
of constantly acting wind–wave excitations.
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METHOD OF DETERMINING 
THE RELIABILITY OF SHIP WITH LOSSES 
OF NONLOCAL STABILITY IN THE MEAN 

SQUARE

Consideration is given to ship failures associated with 
capsizing under the action of wind and waves, i.e. failures 
which are caused by the losses of nonlocal stability of the 
ship equilibrium position θ  0.

In this case, for the kth state of the weight load and the 
heading angle φ of the ship meeting with the wind and waves 
in the lth geographical area of its operation, the weather 
conditions in which are determined by the joint probability 
density of the long-term (regime) distribution of wind and 
wave characteristics f (V, H1/3, T), the probability of the ship 
nonlocal stability remaining in the mean square is determined 
by the expression [5,6]
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where Г2[V, H1/3, T] is the boundary surface of the region 
Ω2{V, H1/3, T} of the values of parameters of the wind–waves 
modes withstood by the ship.

AN EXAMPLE OF SOLVING THE PROBLEM 
OF SHIP NONLOCAL STABILITY 

IN THE MEAN SQUARE
We consider a ship in beam seas (φ = 90 deg).
It is assumed that the frequency bandwidth of this ship 

is relatively small, therefore its roll motion is implemented 
in accordance with the solution of the following equation:
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where the heeling moment from the wind action �
�

UVWX

��� 
is a function of the wind velocity = + , and its 
component ( ), caused by the pulsations of the wind 
velocity ( ), and the heeling moment from the waves action  

( ) are represented by “white noise” in the sense of 
Stratonovich [9].
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The probabilistic characteristics of the nonlinear roll 
motion of the ship are considered as:
– initial statistical moments of the first order or average 

values of roll angles and angular velocities

Mb

	

c

 9

$

N

 de	

R

f  9

$

J

* 
– initial statistical moments of the second order

Mb	

'

c  9

'

N

  db	

R

'

c  9

'

J

  db		

R

c  9

$

N

$

J

; 
– central moments of the second order or roll angles and 

angular velocities dispersions
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Based on the system of stochastic differential equations 

(18), an appropriate system of equations for the statistical 
moments of the first and second orders is constructed. 
After the closure of this system of equations for statistical 
moments, using the relations for the moments of the normal 
distribution, we have [5]
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� are the coefficients of the intensity 
of the first and the second orders [9].

The assumption that the storm is developing slowly allows 
us to transform the system of differential equations (19) into 
the following system of nonlinear algebraic equations to 
determine the probabilistic characteristics of the quasi-
stationary modes of ship roll motion [5]:
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is the average heeling moment of the wind action:
c(zs) is the coefficient of air flow resistance, As and zs are the 
sail area and the applicate of the sail area centre, zh is the 
applicate of the line of the drift force action;
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is the average power of the pulsation component of the wind 
exciting moment;
Sv(ωθ) is the spectral density of the wind velocity;
ωθ is the frequency of small free roll oscillations of the ship;
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is the average power of the wave exciting moment;
κ(ωθ) is the reduction coefficient of the main part of the wave 
exciting moment;
Sζ(ωθ) is the wave spectral density.

In equations (20), the second-order intensity factor 
k
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J

 is 
written without taking into account the correlation between 
wind and wave heeling moments.

The physical interpretation of the last three equations of the 
system of equations for statistical moments (20) is determined 
by the following expressions:
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where Mr is the average value of the righting moment of the 
ship; Mh is the average value of the heeling moment from 
the wind action; Ek is the average kinetic energy of the ship 
roll oscillations; Ep is the average potential energy of the 
ship position during roll motion; Pd is the average power of 
the energy dissipation of the oscillating ship; Pw is the average 
power of the exciting moment due to the action of excitations.

Equations (21)–(23) will be called, respectively, the 
equations of average moments, average energies and average 
powers of the quasi-stationary ship motion mode. The first 
two of these equations are similar to the relations of the 
traditional theory of ship stability at large angles of inclination 
– the equation of moments (2) and the equation of works 
(energies) (3).

The boundary Г2 of the region Ω2 of nonlocal stability in 
the mean square in the considered case is determined by the 
maximum of the average potential energy Ep, the position 
of which, as shown by the system of equations (20), depends 
on the average angle of heel. The value of this maximum is 
determined by the formula
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In accordance with the method for investigating the 
nonlocal stability of the ship under constant action of 
random wind–waves excitations, an analysis of the capsizing 
of ship No 6010 with a displacement of Δ = D = 4905 kN 
(L = 38.7 m, B = 7.0 m, d = 2.98 m) in beam position to 
the wind and waves was performed. The diagrams of the 
static and dynamic stability of this ship are presented in 
Figs. 1 and 2. The accident of the ship took place with wind 
of ~ 7 state under the conditions of developing waves with 
the intensity of ~ 4 state. The dependence of the average wave 
period T on the wave intensity H1/3 was estimated by the 
relation 

H = 3.217
�

E

$FG

.
To analyse this accident, a number of solutions of the 

system of quasi-stationary equations for statistical moments 
(18) were obtained with a gradual increase in the intensity of 
wind–waves excitations from the equilibrium position of the 
ship in calm water at θ = 0 to the loss of nonlocal stability 
in the mean square. The solution of equations (20) and 
calculation of the criterion of nonlocal stability in the mean 
square (24) were obtained by using the generalised reduced 
gradient method in nonlinear programming problems (9) 
and (15).

The characteristics of the considered stages of increasing 
wind and wave intensity and the results of solving the equations 
for statistical moments (20) are presented in Table 1. Table 2 
summarises the main characteristics of the corresponding roll 
motion modes under conditions of increasing storm intensity.
Tab. 1. Results of solving the system of equations for statistical moments (20)

St
ag

es
of

 st
or

m

V, m/s H1/3, m α11
, rad μ21

, rad2 μ22
, 

(rad/s)2 G1(V), s-2

0,5 
G2(H1/3), 

s-3

1 1.00 0.0043 0.00009 0.00000 0.00000 0.00000 0.00000

2 5.00 0.1076 0.00234 0.00000 0.00000 0.00204 0.00000

3 9.00 0.3485 0.00761 0.00003 0.00003 0.00662 0.00000

4 14.00 0.8433 0.01866 0.00048 0.00041 0.01603 0.00002

5 15.00 0.9680 0.02163 0.00081 0.00069 0.01840 0.00004

6 16.00 1.1014 0.02533 0.00187 0.00153 0.02093 0.00009

7 17.00 1.2434 0.03199 0.00577 0.00418 0.02363 0.00016

8 17.50 1.3176 0.04140 0.01169 0.00678 0.02504 0.00040

9 17.65 1.3403 0.05690 0.01840 0.00737 0.02547 0.00044
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Tab. 2. Main characteristics of the ship roll motion modes 
St

ag
es

of
 st

or
m

V, m/s Mh, kNm Pw, kW α11
, deg

�

�

'

N

, deg 2Ek, kNm 2Ep, kNm

1 1.00 0.00000 0.00000 0.00537 0.00000 0.00000 0.00000

2 5.00 5.41510 0.00005 0.13437 0.01812 0.00001 0.00001

3 9.00 17.54494 0.00414 0.43586 0.31352 0.03450 0.03450

4 14.00 42.45441 0.06346 1.06932 1.25622 0.54350 0.54350

5 15.00 48.73593 0.10620 1.23922 1.63369 0.90860 0.90860

6 16.00 55.45066 0.23718 1.45137 2.47762 2.02344 2.02344

7 17.00 62.59860 0.42076 1.83292 4.35219 5.53135 5.53135

8 17.50 66.33502 1.07138 2.37244 6.19519 8.97896 8.97896

9 17.65 67.46685 1.16741 3.26011 7.77259 9.76429 9.76429

Tab. 3. Results of the investigation of local stability of ship roll motion modes 
in developing storm, i.e. the roots of the characteristic equation (12) 
corresponding to the system of differential equations for statistical 
moments (19)

St
ag

es
of

 st
or

m

V, m/s α11
α12

μ21
α1112

μ22

1 1.00 -0.028 +0.964i -0.028 -0.964i -0.028 +0.906i -0.028 -0.906i -0.062

2 5.00 -0.028 +0.964i -0.028 -0.964i -0.028 +0.905i -0.028 -0.905i -0.062

3 9.00 -0.028 +0.964i -0.028 -0.964i -0.028 +0.897i -0.028 -0.897i -0.062

4 14.00 -0.028 +0.964i -0.028 -0.964i -0.028 +0.867i -0.028 -0.867i -0.062

5 15.00 -0.028 +0.964i -0.028 -0.964i -0.028 +0.854i -0.028 -0.854i -0.062

6 16.00 -0.028 +0.958i -0.028 -0.958i -0.028 +0.825i -0.028 -0.825i -0.063

7 17.00 -0.029 +0.919i -0.029 -0.919i -0.027 +0.722i -0.027 -0.722i -0.065

8 17.50 -0.029 +0.858i -0.029 -0.858i -0.026 +0.529i -0.026 -0.529i -0.068

9 17.65 -0.030 +0.800i -0.030 -0.800i -0.000 +0.000i -0.000 -0.000i -0.093

For each stage of the developing storm, the local stability 
of the quasi-stationary modes of the ship roll motion was 
also investigated. The roots of the characteristic equation 
(12) corresponding to the system of differential equations 
for statistical moments (19) are given in Table 3. This table 
shows the fulfillment of the criterion of nonlocal stability in 
the mean square (24) on the boundary Г2 of the domain Ω2.

The data of Tables 1 and 2 are presented in Figs. 3–6. 
Fig. 3 shows the diagram of the average righting moments  
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 and the mean square deviation of the ship’s roll 
oscillations ~S

�



�

�

'

N

. At ~S

�



�

�

'

N

, the function  
�

L

�

 B

$

�9

$

N

 

�

�

'

N

� represents the diagram of ship static 
stability shown in Fig. 1. 

Fig. 4 represents the dependence of the ship average 
potential energy 
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�  on the kinematic 
characteristics of the ship roll motion  and . 

Figs. 3 and 4 respectively show: the boundary Г1 
(Boundary 1) of the region Ω1 of nonlocal stability in the 
mean and the boundary Г2 (Boundary 2) of the region Ω2 of 
nonlocal stability in the mean square of the ship equilibrium 
position in calm water θ  0.

Fig. 3. Diagram of average righting moments with boundary Г1[α1,μ2] 
(Boundary 1) of the domain Ω1{α1,μ2} nonlocal stability in the mean 

of the ship equilibrium position in calm water θ  0 and values of 
average heeling moments Mh of the wind action considered in Tables 1, 2 

on the stages of storm growth

Fig. 4. Diagram of the average potential energies 2Ep with the boundary 
Г2 [α1,μ2] (Boundary 2) of the region Ω2{α1,μ2} of nonlocal stability in 

the mean square of the ship equilibrium position in calm water θ  0 and 
the average kinetic energies 2Ek of the wind and waves action considered in 

Tables 1, 2 on the stages of storm growth

In Figs. 5 and 6, the surfaces �

L

�

 B

$

�9

$

N

 

�

�

'

N

)  and 
^�

D

�

 ^B

'

�9

$

N

 

�

�

'

N

�  are presented in the coordinates  
�

�

 9

$

N

 ~S

�



�

�

'

N

 together with the solutions of the 
equations for statistical moments (20) as the stages of storm 
intensity increase.
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Fig. 5. Diagram of average righting moments with average values of heeling 
moments Mh of the wind action on the stages of storm growth presented in 

Tables 1, 2

Fig. 6.  Diagram of average potential energies 2Ep with values of average 
kinetic energies 2Ek of the wind and waves action on the stages of storm 

growth presented in Tables 1, 2

The algorithm for reflecting the region of nonlocal stability 
of a ship, from the space of kinematic characteristics of 
motion to the space of the parameters of the acting wind–
waves excitations described in [5], was implemented in the 
considered example when solving the sequence of tasks for 
the equations of statistical moments (20) by the method of 

nonlinear programming with the objective function (15). As 
a result of using the one-parameter spectra of wind velocity 
Sv(ω) and sea Sζ(ω), the boundary Г2 of the region Ω2 of the ship 
nonlocal stability in the mean square in the space parameters 
of wind–waves modes (regimes) such as the average wind 
velocity V, m/s and the characteristic wave height H1/3, m was 
received. This boundary is shown in Fig. 7.

Fig. 7. Boundary Г2[V, H1/3] of the region Ω2{V, H1/3} of ship nonlocal stability 
in the mean square and wind-waves modes withstood by the ship at the stages 

of storm intensity increasing specified in Tables 1, 2

Fig. 7 also shows a number of the wind–waves modes 
withstood by the ship when searching for the boundary of 
the region of the existence of real solutions of equations (20) 
by using the nonlinear programming algorithm with the 
objective function (9). At the limit point of the sequence of 
solutions with the objective function (9), the same results 
were obtained as in determining the boundary of the region 
of ship nonlocal stability in the mean square, the solution of 
which is realised using the nonlinear programming task with 
the objective function (15). This means that the boundary 
of the region of nonlocal stability in the mean square of the 
ship equilibrium position θ  0 is the boundary of the real 
solutions of the equations for the statistical moments (20), 
and at this boundary the potential resources of the ship are 
exhausted with respect to increasing constantly acting wind–
waves excitations.

AN EXAMPLE OF SOLVING THE PROBLEM OF SHIP 
RELIABILITY UNDER ACTION OF WIND AND WAVES

An event of maintaining the nonlocal stability of ship 
under the action of the wind–waves modes of its operating 
area is considered. The probability of such event Pkl(φ) when 
using one-parameter characteristics of the wind and waves 
is calculated by the formula
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(25)

The calculation scheme for the determination of such 
reliability indicator Pkl(φ) is presented in Fig. 8. This indicator 
determines the relative number of wind–waves modes of the 
operation area withstood by the ship.

When calculating the reliability indicator by formula (25), 
we use in the equations for statistical moments (20) the one-
parameter wave spectrum Sζ(ω), which depends only on H1/3. 
The use of the two-parameter ITTC spectrum, which depends 
on the characteristic height H1/3 and the average wave period T, 
allows us to clarify the position of the boundary of the region 
of ship nonlocal stability in the mean square in the space of 
such parameters of the acting excitations as V, H1/3, T [5,6]. 
The corresponding solution of the system of equations for 
statistical moments (20) with the definition of the boundary 
Г2 [V, H1/3, T] of region Ω2 {V, H1/3, T} of ship nonlocal stability 
in the mean square is shown in Fig. 9.

This solution allows us to clarify also the reliability 
indicator determined by the formula (15). The result of the 
refined definition of the boundary of the region of nonlocal 
stability in the mean square and the interpretation of the use 
of formula (15) to find the value of the reliability indicator  
Pkl in the space V, H1/3, are presented in Fig. 10.

Fig. 8. The determination of the reliability indicator Pkl(φ) of the ship 
in given area of operation, i.e. the probability of its operation without 

capsizing in accordance with formula (25)

Fig. 9. Boundary Г2[V, H1/3, T] of the region Ω2{V, H1/3, T} of nonlocal stability 
in the mean square and weather conditions for ship No 6010 accident

Fig. 10. On determining the reliability indicator of the ship in area of its 
operation Pkl(φ), i.e. the probability of ship operation without capsizing in 

accordance with formula (15)

CONCLUSIONS

1. The proposed complex method of investigating the 
stochastic nonlocal stability and reliability of the ship in 
storm conditions of operation has two characteristic features 
that condition its novelty in ship seakeeping theory. Firstly, it 
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continues the traditions of the widely known deterministic 
stability theory of ships at large angles of inclination, both 
from the point of view of creating new and more realistic 
approaches for finding the boundaries of areas of nonlocal 
stability of the ship under actions of wind–waves modes, and 
from the point of view of improving the physical interpretation 
of the studied phenomena. Secondly, the method complements 
the procedure for determining the losses of ship nonlocal 
stability under the action of different wind–waves modes with 
an algorithm for calculating the corresponding indicator of 
ship reliability with the help of the long-term distribution 
of these modes characteristics for the given area of ship 
operation.

2. The results of the application of the proposed method 
of investigating mean-square nonlocal stability are in 
satisfactory agreement with the results of ship No. 6010 
capsizing under the action of the wind–waves mode of the 
developing sea.
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