PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effects of artificial-aging temperature on tensile strength, hardness, microstructure, and fault morphology in AlSiMg

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: This research examined the effects of artificial-aging temperature and time on tensile strength, hardness, microstructure, and fault morphology in AlSiMg. Design/methodology/approach: This research was conducted using aluminium alloy at 120°C, 150°C, and 180°C artificial-aging temperature and 6 hours holding time. The tensile test used ASTM B211-03 standard and hardness test adapted to ALCOA 6061 standard. Findings: Tensile test results indicated the highest tenacity on aluminium alloy at a 150ºC temperature that was 47.263% strain level. In addition to the strain level, this research also obtained the highest tensile strength level at 180ºC that was 62.267 kgf/mm2 and the highest hardness value that was 110 HV. The increase in tensile strength and hardness at 180°C was caused by the increase in Mg, Si, and Al. Based on the microstructure test, the highest tenacity was obtained at 150°C temperature as the result of closed and gathered Mg2Si precipitates; while at 180°C temperature, the precipitates appeared to be more distributed, causing a rise in hardness value and tensile strength. AlSiMg tenacity also exhibited from the number of dimples compared to cleavages at 150°C temperature. Research limitations/implications: The limitation that found in this research was conducted using AlSiMg aluminium Al6061 specimen with an artificial-aging treatment at 120ºC, 150°C, and 180°C temperature for 6 hours and then compared to the raw material. AlSiMg tensile specimen was made according to ASTM E8-E8M standard. Practical implications: This research can be applied in industrial manufacture process to find tensile strength, hardness, microstructure, and fault morphology of Al6061 alloy. Originality/value: According to research result, can be understood that by conducting these experiments, Artificial-aging treatment temperature variations in AlSiMg aluminium alloy could increase hardness.
Rocznik
Strony
49--55
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
autor
  • Mechanical Engineering Department, Engineering Faculty, State University of Malang, Semarang street No. 5, Malang, East Java, 65142, Indonesia
autor
  • Mechanical Engineering Department, Engineering Faculty, State University of Malang, Semarang street No. 5, Malang, East Java, 65142, Indonesia
  • Mechanical Engineering Department, Engineering Faculty, State University of Malang, Semarang street No. 5, Malang, East Java, 65142, Indonesia
  • Mechanical Engineering Department, Engineering Faculty, State University of Malang, Semarang street No. 5, Malang, East Java, 65142, Indonesia
Bibliografia
  • [1] A.S. Masrikan, Effect of Natural Aging Heat Treatment on Hardness Level on Aluminum Alloy of Silicon Magnesium, Unpublished Thesis, Malang State University, Malang, 2015.
  • [2] E.P. DeGarmo, J.T. Black, R.A. Kohser, Materials and Processes in Manufacturing, Seventh Edition, Macmillan Publishing Company, New York, 1988.
  • [3] I. Anshari, Chemistry Study Reference 3, Erlangga, Jakarta, 1996.
  • [4] W. Suprapto, Gas Porosity in Duralumin Materials in Vacuum System Casting, 2011, Available at: lib.ui.ac.id/file?file=digital/20306755-D%201297Porositas%20gas-full%20text.pdf, Accessed: February 4, 2017.
  • [5] A.M.A. Mohamed, F.H. Samuel, A review on the heat treatment of Al-Si-Cu/Mg casting alloys, in: F. Czerwinski (Ed.), Heat Treatment. Conventional and Novel Applications, IntechOpen, London, 2012, 55-72, DOI: http://dx.doi.org/10.5772/79832.
  • [6] G.K.C.J. Rogo, Suharno, Yadiono, Effect of Variations in Cast Temperature on Hardness and Micro Structures on the Results of Aluminum Remelting of Tromol Supra X with Metal Molds, 2013, Available at: http://jurnal.fkip.uns.ac.id/index.php/ptm/article/view/ 2657/1857, Accessed: February 28, 2017.
  • [7] T. Surdia, K. Chijiwa, Metal Casting Technique, Pradnya Paramita, Jakarta, 2013.
  • [8] A. Schonmetz, K. Gruber, Knowledge of Materials in Metal Working, Angkasa, Bandung, 1985.
  • [9] R.B.S. Majanasastra, Aging Heat Treatment Effect on Increased Hardness of Surface and Micro Structure of Honda Vario Motorcycle Piston Head, Islamic University of 45. Bekasi, 2015.
  • [10] D.L. Zhang, L.H. Zheng, D.H. StJohn, Effect of a short solution heat treatment time on microstructure and mechanical properties of modified Al-7wt.%Si-0.3 wt.%Mg alloy, Journal of Light Metals 2/1 (2002) 27-36, DOI: https://doi.org/10.1016/S14715317(02)00010-X.
  • [11] M. Kaczorowski, A. Krzynska, The influence of chemical composition on the properties and structure Al-Si-Cu-(Mg) alloys, Warsaw University of Technology Publishing House, Warsaw, 2007.
  • [12] F. Abdillah, Al-Si Alloy Heat Treatment in Piston Prototypes Based on Used Piston Materials, Thesis, Diponegoro University Semarang, 2010.
  • [13] T. Surdia, K. Chijiwa, Metal Casting Technique, Pradnya Paramita, Jakarta, 1982.
  • [14] J. Mulyanti, Effect of aging process temperature on material characteristics of stir casting Al-SiC metal composite, Journal of Technical Competence 2/2 (2011).
  • [15] S. Bagus, N. Media, UPN "Veteran", Jakarta Library, 2011, 135-140.
  • [16] D.I. Tsamroh, P. Puspitasari, Andoko, A.A. Permanasari, P.E. Setyawan, Optimization of multistage artificial aging parameters on Al-Cu alloy mechanical properties, Journal of Achievements in Materials and Manufacturing Engineering 87/2 (2018) 62-67, DOI: https://doi.org/10.5604/01.3001.0012.2828
  • [17] Asfarizal, Pengaruh temperatur yang ditinggikan terhadap kekuatan tarik baja karbon rendah, TeknikA 29/2 (2008) 53-59.
  • [18] ALCOA, Alloy 6061 understanding extruded aluminum alloys, Alcoa, 2002.
  • [19] Subowo, H. Subiyanto, Pengaruh Waktu Penahanan Artificial-aging Terhadap Sifat Mekanis dan Struktur Mikro Coran Paduan Al-7%Si, Indonesian Journal of Physics 13/3 (2002) 171-174.
  • [20] A.S. Kurniawan, Solichin, P. Puspitasari, Analisis Kekuatan Tarik Dan Struktur Mikro Pada Baja, Jurnal Teknik Mesin 22/2 (2014) 1-12.
  • [21] K.O. Pedersen, I. Westermann, T. Furu, T. Børvik, O.S. Hopperstad, Influence of microstructure on workhardening and ductile fracture of aluminium alloys, Materials & Design 70 (2015) 31-44, DOI: https://doi.org/10.1016/j.matdes.2014.12.035
  • [22] R. Rochman, P. Hariyati, C. Purbo, Karakterisasi Sifat Mekanik dan Pembentukan Fasa presipitat pada Aluminium Alloy 2014-T81 Akibat Perlakuan Penuaan, Mekanika 8/2 (2010) 165-171.
  • [23] G.T Hahn, A.R. Rosenfield, Metallurgical factors affecting fracture toughness of aluminum alloys, Metallurgical Transactions A 6 (1975) 653-668, DOI: https://doi.org/10.1007/BF02672285
  • [24] ASTM, Standard Specification for Aluminum and Aluminum-Alloy Bar, Rod, and Wire [Metric], ASTM, 2015, 1-10.
  • [25] S.D. Chastain, Metal Casting: A Sand Casting Manual for the Small Foundry, Vol. II, Chastain Publishing, Jacksonville, 2004.
  • [26] B.C. Manik, Pengaruh Penambahan Unsur Silikon dan Magnesium Terhadap Sifat Mekanik dan Sifat Kelistrikan paduan Alu-minium Hasil Pengecoran, Skripsi, Institut Teknologi Sepuluh, Surabaya, 2017.
  • [27] Mugiono, Lagiyono, Rusnoto, Pengaruh Penambahan Mg Terhadap Sifat Kekerasan dan Kekuatan Impak Serta Struktur Mikro pada Paduan Al-Si Berbasis Material piston Bekas, Jurnal Teknik Mesin Juli (2013) 1-6.
  • [28] Radimin, A. Fuad, Studi Pengaruh Tekanan dan Komposisi Campuran pada Prototipe Piston Komposit dengan Penguat Silikon Karbida (SiC) Menggunakan Metode Squeeze Casting, Prosiding SNATIF Ke-1 Tahun 2014, 197-204.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3378ff48-a9f7-4341-a743-ea350d3ecdd0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.