PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance Evaluation of BB-QZSI-Based DSTATCOM Under Dynamic Load Condition

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the shunt compensation performance of quasi-Z-source inverter (QZSI) and back to back connected QZSIs (BB-QZSI) to address the power quality (PQ) issues in the three-phase three-wire power utility network (PUN). Generally, these PQ issues are poor voltage regulation, low power factor (PF), source current distortion, unbalanced voltage, etc. The proposed BB-QZSI-based distribution static compensator (DSTATCOM) consists of two QZSIs with a common dc-link capacitor. Because the QZSI could achieve buck/boost conversion as well as DC to AC inversion in a single-stage and the back to back configuration decreases the system down time cost (if a fault occurs in one QZSI the other can continue the shunt compensation). Particularly, icosφ control algorithmcontrol algorithm is implemented to generate proper switching pulses for the switches of DSTATCOM. The effectiveness of the BB-QZSI is verified through simulation studies over QZSI using MATLAB/Simulink software satisfying the recommended grid code.
Wydawca
Rocznik
Strony
43--55
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
  • Department of Electrical & Electronics Engineering, Lendi Institute of Engineering & Technology, Vizianagaram, India-535005
  • Department of Electrical & Electronics Engineering, Lendi Institute of Engineering & Technology, Vizianagaram, India-535005
  • Department of Electrical Engineering, Odisha University of Technology and Research, Bhubaneswar, India-751029
  • Department of Electrical & Electronics Engineering, Kalam Institute of Technology, Berhampur, India-761003
  • Department of Electrical & Electronics Engineering, National Institute of Science and Technology, Berhampur, India-761008
Bibliografia
  • Battiston, A., Miliani, E. -H., Pierfederici, S. and Meibody-Tabar, F. (2016). Efficiency Improvement of a Quasi-Z-Source Inverter-Fed Permanent-Magnet Synchronous Machine-Based Electric Vehicle. IEEE Transactions on Transportation Electrification, 2(1), pp. 14–23, doi: 10.1109/TTE.2016.2519349.
  • Bayhan, S., Abu-Rub, H. and Balog, R. S. (2016). Model Predictive Control of Quasi-Z-Source Four-Leg Inverter. IEEE Transactions on Industrial Electronics, 63(7), pp. 4506–4516, doi: 10.1109/TIE.2016.2535981.
  • Bayu A. (2020). Power Quality Enhancement Using DSTATCOM in Industry Plants. Power Electronics and Drives, 5(40), pp. 157–175, doi:10.2478/pead-2020-0012.
  • Car, M., Lešić, V. and Vašak, M. (2021). Cascaded Control of Back-to-Back Converter DC Link Voltage Robust to Grid Parameters Variation. IEEE Transactions on Industrial Electronics, 68(3), pp. 1994–2004.
  • Chauhan, A. K., Raghuram, M. and Singh, S. K. (2018). Nonzero Discontinuous Inductor Current Mode in Certain Z-Source Converters.IEEE Transactions on Power Electronics, 33(4), pp. 2809–2814, doi: 10.1109/TPEL.2017.2754296.
  • Friedli, T., Kolar, J. W., Rodriguez, J. and Wheeler, P. W. (2012). Comparative Evaluation of Three-Phase AC–AC Matrix Converter and Voltage DC-link Back-to-Back Converter Systems. IEEE Transactions on Industrial Electronics, 59(12), pp. 4487–4510.
  • Gu, Y., Chen, Y. and Zhang, B. (2018). Enhanced-Boost Quasi-Z-Source Inverter With an Active Switched Z-Network. IEEE Transactions on Industrial Electronics, 65(10), pp. 8372–8381, doi: 10.1109/TIE.2017.2786214.
  • Li, T. and Cheng, Q. (2018). A Comparative Study of Z-Source Inverter and Enhanced Topologies. CES Transactions on Electrical Machines and Systems, 2(3), pp. 284–288, doi: 10.30941/CESTEMS.2018.00035.
  • Mahato, B., Majumdar, S., Paul, S., Pal, P. K. and Jana, K. C. (2020). A New and Modular Back-to-Back Connected T-Type Inverter for Minimum Number of Power Devices, TSV, and Cost Factor. IETE Technical Review, pp. 1–8, doi: 10.1080/02564602.2020.1860838.
  • Mangaraj, M. and Sabat, J. (2020a). Two and Three-level Supported DSTATCOM Topologies for Compensation Analysis. 2020 International Conference on Computational Intelligence for Smart Power System and Sustainable Energy (CISPSSE), pp. 1–6, doi: 10.1109/CISPSSE49931.2020.9212219.
  • Mangaraj, M. and Sabat, J.(2020b). Comparative Analysis of Both Three & Fifth Level Based DSTATCOM Using IcosΘ Technique.2020 International Conference on Computational Intelligence for Smart Power System and Sustainable Energy (CISPSSE), pp. 1–6, doi: 10.1109/CISPSSE49931.2020.9212272.
  • Mangaraj, M. and Sabat, J. (2021). Analysis and Control Design of Different Level VSI Based DSTATCOM. In: 2021 1st International Conference on Power Electronics and Energy (ICPEE), pp. 1–5, doi: 10.1109/ICPEE50452.2021.9358584.
  • Mangaraj, M. and Sabat, J. (2021). MVSI and AVSI-supported DSTATCOM for PQ Analysis. IETE Journal of Research, pp. 1–7, doi: 10.1080/03772063.2021.1920850.
  • Mangaraj, M., Naidu, V. D., Priyanka, K. and Sabat, J. (2020). Comparative Analysis between Inductor Coupled T Type Split and Self Supported Capacitor Based DSTATCOM. 2020 IEEE International Symposium on Sustainable Energy, Signal Processing and Cyber Security (iSSSC), 2020, pp. 1–5, doi: 10.1109/iSSSC50941.2020.9358812.
  • Mohammadi, M., Moghani, J. S. and Milimonfared, J. (2018). A Novel Dual Switching Frequency Modulation for Z-Source and Quasi-Z-Source Inverters. IEEE Transactions on Industrial Electronics, 65(6), pp. 5167–5176, doi: 10.1109/TIE.2017.2784346.
  • Patel, K. S. and Makwana, V. H. (2021). Modified Control Technique of DFIG for Power Quality Improvement. IETE Journal of Education, 62(1), pp. 44–54, doi: 10.1080/09747338.2021.1930591.
  • Ray, S., Gupta, N. and Gupta, R. A. (2017). A Comprehensive Review on Cascaded H-bridge Inverter-Based Large-Scale Grid-Connected Photovoltaic.IETE Technical Review, 34(5), pp. 463–477, doi:10.1080/02564602.2016.1202792.
  • Reddivari, R. and Jena, D. (2021). A Correlatives Investigation of Impedance Source Network: A Comprehensive Review. IETE Technical Review, pp. 1–34, doi: 10.1080/02564602.2020.1870006.
  • Roomi, MM. (2019). An Overview of Carrier-based Modulation Methods for Z-Source Inverter. Power Electronics and Drives, 4(39), pp. 15–31. doi:10.2478/pead-2019-0007.
  • Sabat, J. and Mangaraj, M. (2021). GLMS Control Strategy Based DSTATCOM for PQ Enhancement, Modeling and Comparative Analysis. Energy System, pp. 1–20, doi: 10.1007/s12667-021-00489-x.
  • Singh, B. and Bhuvaneswari, G. (2020). A High-Performance Microgrid With a Mechanical SensorlessSynRG Operated Wind Energy Generating System. IEEE Transactions on Industrial Informatics, 16(12), pp. 7349–7359, doi: 10.1109/TII.2020.2976906.
  • Tang, C. Y., Chen, Y. F., Chen, Y. M. and Chang, Y. R. (2015).DC-link Voltage Control Strategy for Three-Phase Back-to-Back Active Power Conditioners. IEEE Transactions on Industrial Electronics, 62(10), pp. 6306–6316.
  • Zhou, D., Zhao, J. and Liu, Y. (2016). Independent Control Scheme for Nonredundant Two-Leg Fault-Tolerant Back-to-Back Converter-Fed Induction Motor Drives. IEEE Transactions on Industrial Electronics, 63(11), pp. 6790–6800.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-337844de-2e01-4b8e-9dcd-a794b7749298
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.