PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characterization of ultrafine-grained copper joints acquired by rotary friction welding

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Copper rods with ultrafine-grained microstructure, obtained by multi-turn ECAP processing, were subjected to Direct Drive Rotary Friction Welding using various processing parameters, such as rotational speed and pressure, which resulted in different energy and heat input. Even though friction welding is a high energy process, by a proper selection of processing parameters it was possible to maintain grain size at around 0.7 µm in the weld zone and preserve the UFG microstructure. These microstructural features translated into mechanical properties: the YS for those specimens was around 330 MPa. Processing parameters that resulted in a larger heat input caused an increase in grain size to around 2 µm; this, however, increased ductility and led to a uniform elongation exceeding 5%. Corrosion resistance in the stir zone increased, as was evident in the higher open circuit potential and higher corrosion potential in comparison with base material; the observed differences were about 50 mV. These changes can be explained by the higher fraction of HAGBs in the SZ.
Rocznik
Strony
art. no. e9, 2022
Opis fizyczny
Bibliogr. 49 poz., fot., rys., wykr.
Twórcy
autor
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, Wołoska St. 141, 02-507 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Mechanical and Industrial Engineering, Narbutta St. 85, 02-524 Warsaw, Poland
autor
  • Warsaw University of Technology, Faculty of Mechanical and Industrial Engineering, Narbutta St. 85, 02-524 Warsaw, Poland
autor
  • Faculty of Mechanical Engineering, Military University of Technology, Kaliskiego St. 2, 00-908 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Mechanical and Industrial Engineering, Narbutta St. 85, 02-524 Warsaw, Poland
autor
  • Warsaw University of Technology, Faculty of Mechanical and Industrial Engineering, Narbutta St. 85, 02-524 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, Wołoska St. 141, 02-507 Warsaw, Poland
Bibliografia
  • 1. Segal V. Equal-channel angular extrusion (ECAE): from a laboratory curiosity to an industrial technology. Metals (Basel). 2020;10:244.
  • 2. Li W, Vairis A, Preuss M, Ma T. Linear and rotary friction welding review. Int Mater Rev. 2016;61:71–100. https://doi.org/10.1080/09506608.2015.1109214.
  • 3. Nicholas ED. Friction Processing Technologies. Weld World. 2003;47:2–9.
  • 4. Mirzadeh H. High strain rate superplasticity via friction stir processing (FSP): A review. Mater Sci Eng A. 2021;819: 141499. https://doi.org/10.1016/j.msea.2021.141499.
  • 5. Kwon Y, Saito N, Shigematsu I. Friction stir process as a new manufacturing technique of ultrafine grained aluminum alloy. J Mater Sci Lett. 2002;21:1473–6.
  • 6. Fujii H, Ueji R, Takada Y, Kitahara H, Tsuji N, Nakata K, Nogi K. Friction stir welding of ultrafine grained interstitial free steels. Mater Trans. 2006;47:239–42.
  • 7. Malopheyev S, Mironov S, Kulitskiy V, Kaibyshev R. Friction-stir welding of ultra-fine grained sheets of Al–Mg–Sc–Zr alloy. Mater Sci Eng A. 2015;624:132–9. https://doi.org/10.1016/j.msea.2014.11.079.
  • 8. Sahin M, Akata HE, Ozel K. An experimental study on joining of severe plastic deformed aluminium materials with friction welding method. Mater Des. 2008;29:265–74. https://doi.org/10.1016/j.matdes.2006.11.004.
  • 9. Zhang B, Yuan S, Wang X. Friction stir welding of AZ31 magnesium alloys processed by equal channel angular. Rare Met. 2008;27:393–9.
  • 10. Sato YS, Urata M, Kokawa H, Ikeda K. Hall-Petch relationship in friction stir welds of equal channel angular-pressed aluminium alloys. Mater Sci Eng A. 2003;354:298–305. https://doi.org/10.1016/S0921-5093(03)00008-X.
  • 11. Ouyang J, Yarrapareddy E, Kovacevic R. Microstructural evolution in the friction stir welded 6061 aluminum alloy (T6-temper condition ) to copper. J Mater Process Technl. 2006;172:110–22.https://doi.org/10.1016/j.jmatprotec.2005.09.013.
  • 12. Barekatain H, Kazeminezhad M, Kokabi AH. Microstructure and mechanical properties in dissimilar butt friction stir welding of severely plastic deformed aluminum AA 1050 and commercially pure copper sheets. J Mater Sci Technol. 2014;30:826–34. https://doi.org/10.1016/j.jmst.2013.11.007.
  • 13. Xue P, Wang BB, Chen FF, Wang WG, Xiao BL, Ma ZY. Microstructure and mechanical properties of friction stir processed Cu with an ideal ultra fi ne-grained structure. Mater Charact. 2016;121:187–94. https://doi.org/10.1016/j.matchar.2016.10.009.
  • 14. Prangnell PB, Bowen JR, Apps PJ. Ultra-fine grain structures in aluminium alloys by severe deformation processing. Mater Sci Eng A. 2004;375–377:178–85.
  • 15. Su J, Nelson TW, Sterling CJ. Friction stir processing of large-area bulk UFG aluminum alloys. Scr Mater. 2005;52:135–40. https://doi.org/10.1016/j.scriptamat.2004.09.014.
  • 16. Xie GM, Ma ZY, Geng L. Development of a fine-grained microstructure and the properties of a nugget zone in friction stir welded pure copper. Scr Mater. 2007;57:73–6. https://doi.org/10.1016/j.scriptamat.2007.03.048.
  • 17. Xu N, Song Q, Bao Y, Jiang Y, Shen J. Achieving good strength-ductility synergy of friction stir welded Cu joint by using large load with extremely low welding speed and rotation rate. Mater Sci Eng A. 2017;687:73–81. https://doi.org/10.1016/j.msea.2017.01.052.
  • 18. Xue P, Xiao BL, Zhang Q, Ma ZY. Achieving friction stir welded pure copper joints with nearly equal strength to the parent metal via additional rapid cooling. Scr Mater. 2011;64:1051–4. https://doi.org/10.1016/j.scriptamat.2011.02.019.
  • 19. Davari H, Parsa MH, Hadian AM, Ahmadabadi MN, Davari H, Parsa MH, Hadian AM, Ahmadabadi MN. Experimental and numerical thermomechanical analysis of hybrid friction welding of commercially pure copper bars experimental and numerical thermomechanical analysis of hybrid friction welding of commercially pure copper bars. Mater Manuf Process. 2011;26:694–702.https://doi.org/10.1080/10426914.2010.480993.
  • 20. Uday MB, Fauzi MNA, Zuhailawati H, Ismail AB. Advances in friction welding process: a review. Sci Technol Weld Join. 2010;15:534–59. https:// doi. org/ 10. 1179/ 13621 7110X 12785889550064.
  • 21. Yang Y, Chen W, Lee H. A nonlinear inverse problem in estimating the heat generation in rotary friction welding. Numer Heat Transf Part A Appl Int J Comput Methodol. 2011;59(2):130–49.https://doi.org/10.1080/10407782.2011.540965.
  • 22. Rosochowski A, Olejnik L. Numerical and physical modelling of plastic deformation in 2-turn equal channel angular extrusion. J Mater Process Technol. 2002;126:309–16.
  • 23. Olejnik L, Rosochowski A. Scaled-up ECAP with enhanced productivity. Steel Res Int. 2008;2:439–47.
  • 24. Lipińska M, Olejnik L, Lewandowska M. The influence of an ECAP-based deformation process on the microstructure and properties of electrolytic tough pitch copper. Metals (Basel). 2018;53:3862–75. https://doi.org/10.1007/s10853-017-1814-y.
  • 25. Rosochowski A. Severe plastic deformation technology. Dun-beath: Whittles Publishing; 2017.
  • 26. Morawiński Ł, Jasiński C, Ciemiorek M, Chmielewski T, Olejnik L, Lewandowska M. Solid-state welding of ultrafine grained copper rods. Arch Civ Mech Eng. 2021;21:89. https://doi.org/10.1007/s43452-021-00244-0.
  • 27. Mishra A, Kad BK, Gregori F, Meyers MA. Microstructural evolution in copper subjected to severe plastic deformation: experiments and analysis. Acta Mater. 2007;55:13–28.
  • 28. Molodova X, Gottstein G, Winning M, Hellmig RJ. Thermal stability of ECAP processed pure copper. Mater Sci Eng A. 2007;461:204–13.
  • 29. Sakai T, Belyakov A, Kaibyshev R, Miura H, Jonas JJ. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog Mater Sci. 2014;60:130–207.https://doi.org/10.1016/j.pmatsci.2013.09.002.
  • 30. Heidarzadeh A, Mironov S, Kaibyshev R, Çam G, Simar A, Gerlich A, Withers J. Friction stir welding/processing of metals and alloys : A comprehensive review on microstructural evolution. Prog Mater Sci. 2021;117: 100752. https:// doi. org/ 10. 1016/j.pmatsci.2020.100752.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-33696e1c-c885-4c5d-8f09-5e175a9f5848
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.