PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Method of photogrammetric processing of scanning electron microscope – images for research of soil microsurfaces

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the method of photogrammetric processing of SEM images and the results of its application to determine the spatial coordinates of the points of the microsoil of the forest soil by measuring their SEM images, obtained on SEM "Hitachi" S800 with a magnification of 1000x. Depending on the magnification (scale) of the SEM images, the accuracy of the method is: for M = 1000x mX,Y = ~ 0.1 μm, mZ(h) = ~ 1.0 μm, and for magnification M = 25000x - mX,Y = ~ 0.01 μm, mZ(h) = ~ 0.1 μm. The article presents an unusual workflow based on processing in Dimicros, as well as examples of graphic interpretation of digital modeling of the forest soil surface microrelief in the form of microplanes with levels and 3D models obtained using the Surfer program. This information allows us to learn about the physical and mechanical properties of the soil, its structure, and its resistance to erosion, which is important in construction and environmental protection.
Twórcy
  • Department of Geodesy and Spatial Information, University of Life Sciences in Lublin, ul. Akademicka 13, 20-950 Lublin, Poland
  • Department of Geodesy and Spatial Information, University of Life Sciences in Lublin, ul. Akademicka 13, 20-950 Lublin, Poland
  • Department of Geodesy and Spatial Information, University of Life Sciences in Lublin, ul. Akademicka 13, 20-950 Lublin, Poland
Bibliografia
  • 1. Jaidka S., Sharma R., Kaur S., Singh D.P. Scanning electron microscopy (SEM): Learning to generate and interpret the topographical aspects of materials. Microscopic Techniques for the Non-Expert. Springer International Publishing; 2022; 165–85. https://doi.org/10.1007/978-3-030-99542-3_7.
  • 2. Ahamad M.S.S., Maizul E.N.M. Digital analysis of geo-referenced concrete Scanning Electron Microscope (SEM) images. Civil and Environmental Engineering Reports. 2020; 30(2). https://doi.org/10.2478/ceer-2020-0020.
  • 3. Newell T., Tillotson B., Pearl H., Miller A. Detection of electrical defects with SEMVision in semiconductor production mode manufacturing. In: 2016 27th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC); 2016; 151–6. Available from: https://ieeexplore.ieee.org/abstract/document/7491149.
  • 4. López de la Rosa, F., Sánchez-Reolid, R., Gómez-Sirvent, J.L., Morales, R., Fernández-Caballero, A. A review on machine and deep learning for semiconductor defect classification in scanning electron microscope images. Applied Sciences. 2021; 11(20): 9508. https://doi.org/10.3390/app11209508.
  • 5. Kozikowski, P. Extracting three-dimensional information from SEM images by means of photogrammetry. Micron 2020; 134, 102873. https://doi.org/10.1016/j.micron.2020.102873.
  • 6. Ball, A. D., Job, P. A., Walker, A. E. SEM‐microphotogrammetry, a new take on an old method for generating high‐resolution 3D models from SEM images. Journal of microscopy 2017; 267(2), 214–226. https://doi.org/10.1111/jmi.12560.
  • 7. Bangaru, S.S., Wang, C., Zhou, X., Hassan, M. Scanning electron microscopy (SEM) image segmentation for microstructure analysis of concrete using U-net convolutional neural network. Automation in Construction. 2022; 144: 104602. https://doi.org/10.1016/j.autcon.2022.104602.
  • 8. Shah, K., Sockalingam, S., O’Brien, H., Yang, G., EL Loubani, M., Lee, D., Sutton, M. A. Submicroscale speckle pattern creation on single carbon fibers for scanning electron microscope-digital image correlation (SEM-DIC) experiments. Composites Part A: Applied Science and Manufacturing. 2023; 165: 107331. https://doi.org/10.1016/j.compositesa.2022.107331.
  • 9. Sun, X., Brewin, R. J., Hacker, C., Viljoen, J. J., Li, M. Generating open-source 3D phytoplankton models by integrating photogrammetry with scanning electron microscopy. Frontiers in Microbiology 2024; 15, 1429179. https://doi.org/10.3389/fmicb.2024.1429179.
  • 10. Wiatr, A., Job, K., Wiatr, M. Pattern of cholesteatomas under a scanning electron microscope - a risk factor for bone resorption. ACTA Otorhinolaryngologica Italica. 2021; 41(4): 371. https://doi.org/10.14639/0392-100X-N1413.
  • 11. Yuan, J., Yang, L., Yu, P., Tang, N., Liu, L., Wang, W., et al. Comparison and development of scanning electron microscope techniques for delicate plant tissues. Plant Science. 2024; 340: 111963. https://doi.org/10.1016/j.plantsci.2023.111963.
  • 12. Rickard, W. D., Coelho, J. F. R., Hollick, J., Soon, S., Woods, A. Application of photogrammetric 3D reconstruction to scanning electron microscopy: Considerations for volume analysis. Electronic Imaging 2021; 33, 1–9. https://doi.org/10.2352/J.ImagingSci.Technol.2020.64.6.060404.
  • 13. Gontard, L.C., López-Castro, J.D., González-Rovira, L., Vázquez-Martínez, J.M., Varela-Feria, F.M., Marcos, M., et al. Assessment of engineered surfaces roughness by high-resolution 3D SEM photogrammetry. Ultramicroscopy. 2017; 177: 106–114. https://doi.org/10.1016/j.ultramic.2017.03.007.
  • 14. Mahato, P.L., Weatherby, T., Ewell, K., Jha, R., Mishra, B. Scanning electron microscope-based evaluation of eggshell quality. Poultry Science. 2024; 103(3):103428. https://doi.org/10.1016/j.psj.2024.103428.
  • 15. Bullock, E.S., von der Handt, A., Halfpenny, A. Scanning electron microscopy, electron probe microanalysis, and electron backscatter diffraction in the geological sciences. Treatise on Geochemistry (Third edition). Oxford: Elsevier; 2025; 789–828. https://doi.org/10.1016/B978-0-323-99762-1.00087-5.
  • 16. Razmjooei, M.J., O’Regan, M. Improved paired light and scanning electron microscope imaging technique for identifying nannofossils in Arctic sediments. Geobios. 2024; 87: 45–56. https://doi.org/10.1016/j.geobios.2024.08.016.
  • 17. Ali, A., Zhang, N., Santos, R.M. Mineral characterization using scanning electron microscopy (SEM): A review of the fundamentals, advancements, and research directions. Applied Sciences (Switzerland). 2023; 13(23). https://doi.org/10.3390/app132312600.
  • 18. Barbieri, G., da Silva, F. P. Acquisition of 3D models with submillimeter-sized features from SEM images by use of photogrammetry: A dimensional comparison to microtomography. Micron 2019; 121: 26–32. https://doi.org/10.1016/j.micron.2019.02.013.
  • 19. Gerke, K.M., Korostilev, E.V., Romanenko, K.A., Karsanina, M.V. Going submicron in the precise analysis of soil structure: A FIB-SEM imaging study at nanoscale. Geoderma. 2021; 383: 114739. https://doi.org/10.1016/j.geoderma.2020.114739.
  • 20. Kim, H., Han, J., Han, T.Y.J. Machine vision-driven automatic recognition of particle size and morphology in SEM images. Nanoscale. 2020; 12(37): 19461–9. https://doi.org/10.1039/D0NR04140H.
  • 21. Dahy, G., Soliman, M.M., Alshater, H., Slowik, A., Ella Hassanien A. Optimized deep networks for the classification of nanoparticles in scanning electron microscopy imaging. Computational Materials Science. 2023; 223. https://doi.org/10.1016/j.commatsci.2023.112135.
  • 22. Mazur, A., Obroślak, R., Nieścioruk, K., Król, Ż., Gabryszuk, J., Rybicki, R. Analysis of erosion control constructions effectiveness the case of a road gully in Wielkopole (Lublin Upland). J. Ecol. Eng 2016; 17(4): 180–183. https://doi.org/10.12911/22998993/64507.
  • 23. Olson, K.R., Jones, R.L. Soil organic carbon and fly-ash distribution in eroded phases of soils in Illinois and Russia. Soil Till. Res. 2005; 81: 143–153. https://doi.org/10.1016/j.still.2004.09.003.
  • 24. Ehrhardt, A., Deumlich, D., Gerke, H.H. Soil surface micro-topography by structure-from-motion photogrammetry for monitoring density and erosion dynamics. Front Environ Sci. 2022; 9. https://doi.org/10.3389/fenvs.2021.737702.
  • 25. Hladký, J., Novotná, J., Elbl, J., Kynický, J., Juřička, D., Novotná, J., Brtnický, M. Impacts of water erosion on soil physical properties. Acta Univ. Agric. Silvic. Mendelianae Brun 2016; 64: 1523–1527.
  • 26. Olson, K.R., Gennadiyew, A.N., Jones, R.L., Chernyanskii, S. Erosion pattern on cultivated and reforested hillslopes in Moscow Region, Russia. Soil Sci. Soc. Am. J. 2002; 66: 193–201. https://doi.org/10.2136/sssaj2002.1930a.
  • 27. Mazur, A. Quantity and quality of surface and subsurface runoff from an eroded loess slope used for agricultural purposes. Water 2018; 10: 1132. https://doi.org/10.3390/w10091132.
  • 28. Mazur, A. Losses of chemical nutrients of plants and soil as a result of the outflow of water from the sodded loess slope. Przem. Chem. 2018a; 97(12): 2154–2157. https://doi.org/10.15199/62.2018.12.28.
  • 29. Mazur, A. Surface and subsurface water runoff and selected matter components from the forested loess slope. J. Ecol. Eng. 2018c; 19(6): 259–266. https://doi.org/10.12911/22998993/95092.
  • 30. Howell, P. A practical method for the correction of distortions in SEM photogrammetry. In: Proc Of the Annual Scanning Electron Microscope Symposium Chicago, Illinois. 1975; 199–206.
  • 31. Melnyk, V. M., Voloshin, V. V., Tarasyuk, F. P., Blinder, Yu. S. Methods of quantitative characteristics of soil microstructure. Visn. Lviv. state un-tu. Geographical series. Lviv 1999; 25: 24–27. (in Ukrainian).
  • 32. Melnyk, V. M., Shostak, A. V. Quantitative stereomicrofractography: monograph. PVD “Tverdynya” Lutsk 2010; 460. (in Ukrainian).
  • 33. Zhou, W., Apkarian, R., Wang, Z. L., Joy, D. Fundamentals of scanning electron microscopy (SEM). Scanning microscopy for nanotechnology: techniques and applications. Springer 2007; 1–40. https://doi.org/10.1007/978-0-387-39620-0_1.
  • 34. Frahm, E. Scanning electron microscopy (SEM): Applications in archaeology. Encyclopedia of global archaeology 2014; 6487–6495. https://doi.org/10.1007/978-1-4419-0465-2_341.
  • 35. Tafti, A. P., Kirkpatrick, A. B., Alavi, Z., Owen, H. A., Yu, Z. Recent advances in 3D SEM surface reconstruction. Micron 2015; 78, 54–66. https://doi.org/10.1016/j.micron.2015.07.005.
  • 36. Cornille, N., Garcia, D., Sutton, M. A., McNeill, S., Orteu, J. J. Automated 3-D reconstruction using a scanning electron microscope. In: SEM conference on experimental and applied mechanics 2003; June, Charlotte.; 2–4.
  • 37. Erol, A. High-Magnification SEM Micrograph of Siloxanes. In: Atomic-force Microscopy and Its Applications. IntechOpen. 2018; 10(6), 2627–2633. https://doi.org/10.1007/s12633-018-9799-y.
  • 38. Gontard, L. C., Batista, M., Salguero, J., Calvino, J. J. Three-dimensional chemical mapping using non-destructive SEM and photogrammetry. Scientific Reports 2018; 8(1), 11000. https://doi.org/10.1038/s41598-018-29458-8.
  • 39. Tang, C.S., Lin, L., Cheng, Q., Zhu, C., Wang, D.W., Lin, Z.Y., et al. Quantification and characterizing of soil microstructure features by image processing technique. Computers and Geotechnics. 2020; 128: 103817. https://doi.org/10.1016/j.compgeo.2020.103817.
  • 40. Kowalik, M.P., Pelowski, F., Lipowiecki, I. Test and comparison of different digitalization techniques for objects with surfaces difficult to scan. Adv Sci Technol Res J. 2024; 19(2): 1–15. https://doi.org/10.12913/22998624/194997.
  • 41. Kwieciński, K., Paluch, M., Lisowska, A. Analysis of the dimensional accuracy of point clouds created by photographic scanning. Adv Sci Technol Res J. 2024; 18(6): 121–32. https://doi.org/10.12913/22998624/191430.
  • 42. Kozikowski, P. Extracting three-dimensional information from SEM images by means of photogrammetry. Micron. 2020; 134: 102873. https://doi.org/10.1016/j.micron.2020.102873.
  • 43. Ivanchuk, O. Technology of processing digital SEM-images of solid microfloors. Urban planning and territorial planning: scientific-technical. coll. KNUBA. Kyiv 2017; 63: 170–184. (in Ukrainian).
  • 44. Ivanchuk, O. Application of the method of photogrammetrical operation of SEM-stereo pairs for investigation of microsurfaces of geological objects and soils. Cadastre, photogrammetry, geoinformatics: modern technologies and development perspectives: materials of the third international conference, September 26–28, 2001, Kraków, Osieczany. - Archiwum Fotogrametrii, Kartografii i Teledetekcji. Cracow 2001; 11: 5.11–5.18. (in Ukrainian).
  • 45. Ivanchuk, O., Khrupin, I. Structure and functions of the software complex “Dimicros” for processing REM-images on a digital photogrammetric station. Modern achievements of geodetic science and production. Lviv 2012; I(23): 193–197. (in Ukrainian).
  • 46. Ivanchuk, O. Research of accuracy of the actual value of magnification (scale) of digital SEM images generated by SEM JCM-5000 (NeoScope) of firm JEOL. Geodesy, cartography and aerial photography: interdepartmental scientific and technical coll. Lviv 2012; (76): 80–84. (in Ukrainian).
  • 47. Ivanchuk, O., Barfels, T., Heeg, J., Heger, W. Research of values of distortions of digital SEM images obtained on SEM DSM-960A (CARL Zeiss, Germany) and the accuracy of their consideration. Geodesy, cartography and aerial photography: between from. scientific and technical coll. Lviv 2013; 78: 120–126. (in Ukrainian).
  • 48. Boyde, A., Ross, H.F. Photogrammetry and scanning electron microscopy. Photogrammetric Record 1975; 46(8): 408–457. https://doi.org/10.1111/j.1477-9730.1975.tb00805.x.
  • 49. Burkhardt, R. Investigations into the calibration of an electron microscope. Mitt. geod. Inst. Techn. Univ. Graz. 1980; 35. (in German).
  • 50. Ghosh S. K., Nagaraja H. Scanning electron micrography and photogrammetry. Photogrammetric Engineering and Remote Sensing 1976; 5(42): 649–657.
  • 51. Melnyk, V. M., Shostak, A. Fractal theory of soil erosion. Modern achievements of geodetic science and production. Lviv Publishing House Polytechnic 2014; II(28): 78–81.
  • 52. Ivanchuk, O. Research into the accuracy of modeling the microrelief of object surfaces by mathematical methods based on measurements of their digital SEM stereo images. Modern achievements of geodetic science and production. 2015; II(30); 75–81. (in Ukrainian).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-335d9ce4-25d4-469b-b3e7-e53050365170
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.