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Abstract: Surfaces with a constant slope with respect to the given surface 7 are defined in the
first part of the paper, which may not be developable in relation to the surfaces of a constant
slope. It is shown that rotational conical surface and one-sheet rotational hyperboloid are the
only two rotational surfaces with a constant slope. The condition is derived for the surface with
a constant slope to be a torsal surface, and a link to the surface of tangents to the space curve is
also given. Generalized surfaces with a constant slope are defined in the second part of the pa-
per. Their generating lines are determined by points on a space curve and they have a constant
slope with respect to a specific system of planes. Mathematical description of these surfaces
enables the creation of various surfaces with a constant slope and their modelling on computer.
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1 Surfaces with a constant slope
Surface of a constant slope with respect to the given plane 7 is the term used for the

N . T
torsal surface whose generating lines have the same deviation ye }0,5{ from the plane 7.

Number o =tg % o € ]0,+oo[ is called the slope of the surface with respect to the plane .

Let us consider ruled surfaces in the Euclidean space E3 whose generating lines have
the same slope o with respect to the given plane 7 but these surfaces need not be developable
in general. They will be called surfaces with a constant slope.

Furthermore, let the generating lines of the surface x with the constant slope ¢ with
respect to the plane 7 be given by points on the curve A — 7 and by direction vectors in
such way, that they have the slope o with respect to the plane 7.

1.1 Mathematical description of surfaces with a constant slope

Let us determine the Cartesian coordinate system [O,x, y,z] in the space E3, respec-
tively in its vector space V(E3). The plane 7is the plane xy. The curve A c xy is given by the
vector function

r(s)=(x(s), y(),0), sel,
s is an arc of the curve A°. Let
t=t(s), n=n(s), sel,
are vector functions of the Frenet-Serret trihedron of the curve A"

Direction vectors of generating lines of the surface x in the points on the curve A are

given by the vector function
u(s) =sinw(s) t(s)+cosw(s)n(s)+ecoe,, sel, (D)
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where @is an arbitrary real function that is at least CY continuous on interval I, ¢e==%1 and
the vector e, =(0,0,1).
The surface with a constant slope is parameterized by the vector function
xX(s,u)=r(s)+u (sinw(s) t(s) +cosw(s)n(s)+eoe,), sel, ueR (2)
Choosing £=1 or £€=-1 we receive, in general, two different surfaces x, a x, that

are symmetric with respect to the plane 7.

The surface k parameterized by the vector function (2) is determined by the curve A,
function @, and by the slope &. The curve A will be called the generatrix of the surface K.
1.2  Examples of surfaces with a constant slope

Example 1. The generatrix /A is a segment of the evolvent to the circle <& with
a centre in the origin and the radius r. /A is parameterized by the vector function.

r s): (r(cosJﬁ + 4 /ﬁ sinJﬁ} r(sinJé —Jﬁ coswfﬁ} OJ, se [0, d] 3)
r r r T r r
Vector functions of the Frenet-Serret trihedron elements of the evolvent A are

ts)={cos1/§,sin1/§,0} n(s)=(—sin1/§,cos1/§,0], se[0,d].
r r r r

The surface x has according to (2) the parametric expression for ¢ = 1 in the form

xzr(cos\/g+\/§sin\/§j+usin(ﬂs)—\/§J ,
r r r r
o - e 7 Jrusof o=
y=r|sin,[— — +ucos| @(s)—,|— 4)
R

z=uo, s€[0,d], ue R .
Surface patch is visualised in the Figure 1 for w(s)=2s/mr, r=2, 0':\/3 ,
€[0,10] , d =2xn’r.
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Fig. 1

1.3 Rotational surfaces with a constant slope

Rotational surfaces with a constant slope can be determined by the generatrix /A~ in
the form of a circle, while the function @ is constant on the interval I.

The circle X is given by the vector function
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r(s) = (rcosi,rsini,O) , s€]0,2nr] .
r r

Vector functions of its Frenet-Serret trihedron are
.S N R) .8
t(s) = (— s1n—,cos—,0} , n(s) = (— cos—,—sm—,OJ , s€][0,2nr] .
r r r r

Let for Vs € [0, 2nr] be w(s) = ¢, ¢ is a constant from R .
According to (2), the surface x has the parametric representation

r r r r
se€[0,2nr], ue R .
Excluding parameters s and u from the equations (5) we receive the equation

S S .S (s
X=rcos——ucos|——c|, y=rsin——usin| ——c|, z=ueo, &)

0'2(362+y2)—(z—80'rcosc)2 =o’r’sin’c . (6)
Three cases might be considered:

) i
a) c is a constant from R, cika, ke 7.

Then (5), or (6) respectively, is the parametric rep-
resentation, or equations of two rotational one-sheet hy-
perboloids x; for e=1 and x, for ¢ =—1, respectively.

Surface  patch is  visualised in Figure2 for
r=10, 6 =2,c=1/2 , uel0,13].

b) c=(2k+l)g, ke Z.

The equation (6) has the form
2

x+y? g

r2 0_2r2
and this is the equation of the rotational one-sheet hyperboloid with the centre in the origin O,
while the circle A is its neck circle. As there is no ¢ in the equation, therefore x; = x, . The
surface is symmetrical with respect to the plane 7 and it is created by any one of the two sys-
tems of lines with the slope  with respect to the plane 7 (See Figure 3). This hyperboloid is
the only surface with the property x; = «;.
c) c=kn, ke Z.
The equation (6) for this c is

az(xz + yz)—(z—e or) =0

and this is the equation of the conical surfaces x; and x, symmetrical with respect to the
plane 7. Patches of both surfaces are shown in Figure 4.

=1
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The following proposition is valid:
The rotational surface with the constant slope o, o€ ]0,+ [ is either a rotational one-sheet
hyperboloid or a rotational conical surface.
1.4  Torsal generating line on a surface with a constant slope

Let us assume that the generatrix ‘A is the regular curve. Vectors of the Frenet-Serret
trihedron of the curve A determine an orthonormal basis, therefore their coordinates can be
expressed as follows:

t(s) = (cosa(s),sina(s),0), n(s)=(-sina(s),cosa(s),0), sel, (7
where «is a real function that is at least C"" continuous on interval I.

Derivatives of the vector functions (7) are vector functions

t'(s) =a'(s)n(s), n'(s)=-a'(s) t(s) ®)
The partial derivatives 8xés,u) of the vector functions (2) can be adjusted using the
s

formulas (8) as follows:

axg)s, 2 (1+u(@'(s) — a&'(s)) cos () t(s) —u(@'(s) — &' (s)) sin@(s) n(s) .~ (9)
S

The vector function (9) describes direction vectors of tangents to the parametric curves
for the constant u. For u = 0O there is

ox(s,u) —t(s). (10)
ds
and for u =1 it is
axg)s,u) = (1+(@'(s) = &/(5)) cos @(5)) t(s) = (@(5) — & (s)) sin @(s) n(s) . an
s

Vectors (10) and (11) must be linearly dependent in order to have the generating line
to be a torsal line for some s. This is true if and only if
(' (s) -/ (s))sina(s) =0 ,
thus
) @'(s)—-a'(s)=0 = w(s)=als)+c,
i) sinw(s)=0 = w(s)=kn, ke Z .
If one of the equations i) or ii) is fulfilled for certain s € I , then the generating line is a
torsal line.



The Journal of Polish Society for Geometry and Engineering Graphics
Volume 19 (2009), 67 — 77 71

Let us identify torsal generating lines on the surface from the example 1 with the pa-
rametric representation (4). For this surface there is

o(s) =22 a(s)z,/ﬁ = w(s)=2, a’(s)z‘/i, s#0.
r r Tr 2rs

The equation i) is satisfied for s =n’r/8 and a torsal generating line on the surface
corresponds to this parameter.

Other torsal lines on the surface can be obtained from the equation ii), which appears
for this surface in the form

Dok = s=T k=0,1,2.3.4 .

The surface has 6 torsal generating lines on the interval [0, 27°r].

From the rotational surfaces with a constant slope it is the rotational hyperboloid that
18 not a torsal surface, because

a(s)=c, c#kn a cr(s):ﬁ = w(s)=0 a 0/(5):l for Vse[0,2m].
r r

Neither of the two equations 1) and i1) is satisfied. The surface has no torsal generating lines.
On the contrary, in the case of the rotational conical surface there is @(s)=c, c=kn and

according to ii) the surface is generated by torsal lines entirely, and it is therefore a torsal sur-
face.
1.5 Ruled surfaces with a constant slope

As it was already stated, these surfaces are called surfaces of a constant slope.

The surface x with a constant slope will be a torsal surface, if the equations 1) or ii)
will be valid for Vse I.

Using (7) we can rewrite the direction vectors (1) of generating lines of the surface x
as follows:

u(s) = (sin(@(s) — a(s)),cos(a(s) — a(s)), e ), sel . (12)
If the equation 1) is the identity at the interval I, then the vectors (12) are
u(s) =(sinc, cosc, € 0) (13)

and the surface is a cylindrical surface. The
curve ‘A’is its generatrix and (13) is the direc-
tion vector of its generating lines.

In Figure 5 we have depicted the cylin-
drical surface patch with the evolvent from the
example 1 as its generatrix A° parameterized
by the vector function (3).

If the equation 1ii) is the identity on the
intervale I, the surface is parameterized by the
vector function

x(s,u) =r(s)+u(n(s)+eoce,), sel, ueRk . Fig. 5

777777
T

Orthographic views of generating lines in the plane 7 are normals to the curve A"
Therefore the preposition is valid:
Torsal surfaces with a constant slope determined by the generatrix A C &t are
1. cylindrical surfaces,
2. surfaces, for which orthographic views of their generating lines in the plane & are
normals to the generatrix ‘X . These include also a plane and a rotational conical
surface.
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Example 2. Let the generatrix A be the ellipse given by the vector function
r(t)=(a cost,bsint,0), re[0,2n].
The unit direction vectors of normals to the ellipse are given by the vector function
n(t)=( —bcost ’ —asint ,O] . tel0.2n].
Va®sin®t+b>cos’t a*sin®t+b>cos’t
Direction vectors of the generating lines of the torsal surface with a constant slope can be de-
termined by the vector function

—bcost —asint
u(t) = : Lo |, tel0,2n], ee {-1,1}.
\/(12 sin®r+b*cos’t \/a2 sinr+b*cos’t

The parametric expression of surface x is for € =1 the following

bcost . asint
X=acost—u , y=bsint—u

Ja?sint+b? cos? ¢

, Z=UO0 ,

Ja?sin? r+b% cos’t
tel0,2n], ueR.

Intersection of the surface x and the plane xz with the equation y = 0 is the curve /A; deter-
mined by the parametric representation

2
b
xze—cost , y=0, z:—o-\/azsinzt+b2coszt , te [0, 2m]. (14)
a a
Elimination of the parameter ¢ from the equations (14) yields the equation
2 2
X Z
—+——=1 A y=0,
e’ bo’ Y

which is the equation of the ellipse with vertices in the foci of the ellipse ‘A% The curve A; is
a segment of this ellipse (Figure 6b).
The intersection of the surface x and the plane yz with the equation x = 0 is the curve

A, represented parametrically by the expression
2

- . ao .
x=0, y= sint, ZZT\/azsmzt+bzcoszt , te0,2x]. (15)
Eliminating the parameter ¢ from the equations (15) we receive the equation
2 2
Z
—y—2 +——=1 A x=0
e ao

representing hyperbola. The curve ‘A3 is a segment of this hyperbola (Figure 6b).

Fig. 6b
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In Figure 6a, we have viewed the respective patch of the surface choosing a =4,
2

b=3, 0=3/2. When 0'=Z—2, A is the circular arc.

Let the generatrix /A° be the regular curve with non-constant first curvature in all
points and let the orthographic views of generating lines of the surface x with a constant slope
be normals to the curve /A”. Then x must be a torsal surface, but with respect to the stated
assumptions, it cannot be a rotational cylindrical surface or a rotation conical surface. The sur-
face k¥ must be the surface of tangents to the space curve, let us denote it as 77Z. It follows
from the preceding considerations that the curve %/Z is located on the cylindrical surface de-
termined by the evolute to the curve A and with generating lines perpendicular to the plane
7. The curve 77/ is parameterized by the vector function

z(t) =x()+Rt)n(t)+o R(t)e,, tel], (16)
where the real function R(t), te J is the function of radii of the curve A% osculating circles.

The evolute to the ellipse A” from the example 2 has the parametric representation
2 2

e 3 -
xX=—cos’t, y=
a

The radii of the osculating circles of the ellipse A” are values of the function
J(@®sin’ t +b* cos® 1)’
ab
According to (16) the parametric expression of the curve 772 is
e’ -é’ 0\ (@’sin® t +b* cos® 1)°

X=—cos’t, y= sinr, z= , te|0,2mn].
a ab

sinr, z=0, te][0,2x].

R(1) = , te |0, 2n].

In Figure 7a, we can see the ellipse A", its evolute & and the curve 7/. In Figure 7b
we have mapped the patch of the surface of tangents to the curve A”, see also Figure 6a,
while its ground view is in Figure 7c.

Let the generatrix /A be a segment of an evolvent to the circle &£ from the Exam-
ple 1. It is well-known that an evolute to the curve ‘A is the circle &£ and the curve 77 is a
segment of a cylindrical helix. The torsal surface with a constant slope is then the surface of
tangents to the helix 772.

il

)
|

Fig. 7a
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Fig. 7c

2 Generalized surfaces with a constant slope
2.1 Generalized surfaces with a constant slope with respect to the given surface

Let us replace the plane 7 by a general regular surface 7 and let a regular curve A~ be
located on the surface 7. Let us create the ruled surface x, whose generating lines are given
by points on the curve /A , while in all this points they have the constant slope with respect to
the relevant tangent planes to the surface z. This ruled surface will be called generalized sur-
face with a constant slope with respect to the surface 7z It is evident that surfaces with
a constant slope form a special class of generalized surfaces with a constant slope.
2.2  Mathematical description of generalized surfaces with a constant slope

Let the surface 7 be parametrized by the vector function

X =X(u,v) on the definition domain G
and the curve A” c & be defined by functions

u=u(s), v=v(s), sel,
s is the arc of the curve A” parametrized by the vector function
r(s) =xu(s),v(s)), sel.
Vectors
t=t(s), e=e(s), n=n(s)

generate the orthonormal basis at every point on the curve /A°. The vector t is the direction
vector of a tangent to the curve JA°, n is the direction vector of a normal to the surface and
e =nxt is the direction vector of the intersection line of a tangent plane to the surface 7 and

the normal plane to the curve ‘A" at the respective point.
Direction vectors of generating lines to the surface x are given by the vector function
u(s) =sinaw(s) t(s)+cosw(s) e(s)+eon(s), sel, £==*1
and the generalized surface x with the constant slope o with respect to the surface 7 is pa-
rametrized by the vector function
X(s,t) =r(s)+tu(s), sel, teR.
Example 3. Let the surface 7 be the sphere defined by the vector function
x(u,v) = (r COSU COSV,  COSU SINV, ¥ sinu), ue [— /2, n/2], ve [0, 2x].
The curve A is the v-parametric curve for u = n/4, so this circle is parametrized by the vec-
tor function
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r(s)z(%cosg,ﬁsing,ﬁ] , se[0, r\/E] .

Vector functions t, e, and n are

\

r

2 2
t(s) = (— sini, cosi, OJ ,
r r <\

1 s\/E . s\/z \.\‘

e(s) =—=| —cos ,—sin——, 1], ,
72 p p =7
)
B
By

r J

V2

The generalized surface x with the constant slope o
with respect to the sphere has for £ =1 the parametric Fig. 8
presentation

X=—— cos 2 —t|sin 2 sin @(s) +Lcos£cos a(s)— g—o-cos
V2 N 2

r r
y= T sin£+t cosﬁ sin @(s) —Lsinﬁcos a(s)+ g—asinﬂ
NI V2o V2 ’

r

z=£+%(cosa)(s)+80'), s€ [O, T r\/z], teR .

The patch of the surface received by choosing the function @(s)=2s/ 2, for o=1/4 ,
te[0,3] and r=4 is shown in Figure 8.

2.3 Generalized surface with a constant slope with respect to osculating planes to its
generating curve

Let A be a regular space curve which is parametrized by the vector function

r=r(s), sel, s isanatural parameter of the curve A .

Vector functions of its Frenet-Serret trihedron are
t=t(s), n=n(s), b=b(s) .

Generating lines of the surface x are given by points on the curve /A~ and they have
the constant slope o with respect to the osculating planes to the curve at every point on the
curve JA°. The surface x will be called the generalized surface with a constant slope with re-
spect to osculating planes to a curve.

Direction vectors of generating line are given by the vector function

u(s) =sinw(s) t(s)+cosw(s)n(s)+eab(s), s==x1
and the surface x is parametrized by the vector function
X(s,t)=r(s)+rtu(s), sel, teR.

Surfaces with constant slope form again a special class, when ‘A" is a planar curve.

Example 4. Let the curve A be a cylindrical helix parametrized by the vector function

S .S v, S
r(s)=|rcos—, r sin—, , s€[0,c],
(s) [ p, p, dj [0, c]

where r 1is the radius of the helix, vy is the helical movement pitch, d =\lr2 +v02 and c is a real

positive constant.
The Frenet-Serret trihedron is given by the vector functions
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t(s) = —Lsini,icosi,v—0 ,
d d d d d

n(s) = (— cosi, —sini, Oj ,
d d

Direction vectors of generating lines of the surface x are given by the vector function

ro. .8 s vV, EO . §
u(s) = [_E sin @(s) sin E —cos @(s) cos —+———sin—,

ro. s s Vv, EO s
—sin @(s) cos ——cos @(s) sin ———2 cos—,
d d d

v—osina)(s)+ réeo .
d d

The surface x has the parametric representation

Vv, EC
x:rcosi—t Lsina)(s)sini+cosa)(s)cosi— 0 sini ,
d d d
.S ro. s . s VW&o s
=rsin—+¢| —sin @(s) cos— —cos @(s) sin —— cos— | ,
Y d (d @) cos (s)sin) d]
VS Vo . reoc
7=—+t|—smmaw(s)+—— |, s€(0,c), teR.
e[S+ 757, e o

In Figures 9 to 11 examples of surface patches are displayed for selected function axs)
and interval of parameter ¢. In all cases the same radius r =4 of the helix, the helical move-
ment pitch vo = 3, the slope o0 =1/4, e =1 and ¢ =10n have been chosen.

The surface patch for 7€ [0, 8] and @(s)=0 for all se [0, 10x] is shown in Figure 9.

Then the orthographic views of generating lines to the osculating planes form the main nor-
mals to the helix A .

The surface patch for 7€ [0, 8] and @(s) = ZiSS is shown in Figure 10, in Figure 11
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example of choice @(s) = % and 7€ [0, 16] is illustrated.

Note. Surfaces of revolution with a constant slope can be generated by revolution of
a generating line about given axis. Composite revolution of a line about two, or more parallel
axes determines a two-axial, or a multi-axial surface of revolution of cycloidal type, which is
the surface with a constant slope to any plane perpendicular to both axes of revolution. Gener-
alised surface with a constant slope can be generated e.g. by composite revolution of a line
about two intersecting or skew axes, as the two-axial surfaces of revolution of spherical or
Euler type. Two-axial surfaces of revolution are classified in details in [3].

Some surfaces with constant slope are not easily viewable without a computer. The
mathematical description of these surfaces is almost essential for their display and modelling,
or in search for their modifications.
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POWIERZCHNIE O STALYM NACHYLENIU I ICH UOGOLNIENIA

Powierzchnie o statym nachyleniu, omawiane w tej pracy, to powierzchnie, ktérych tworzace sa
nachylone do pewnej ptaszczyzny pod danym katem. Warunek taki spetnia hiperboloida obro-
towa jednopowtokowa. Stad powierzchnie te nie musza by¢ powierzchniami rozwijalnymi.
Okazuje si¢ wtedy, ze powierzchnia stozka obrotowego i hiperboloida jednopowlokowa obro-
towa sa jedynymi powierzchniami obrotowymi o stalym nachyleniu. Uog6lnione powierzchnie
o staltym nachyleniu maja t¢ wtasno$¢, ze ich tworzace sa wyznaczone przez punkty pewnej
krzywej przestrzennej i maja state nachylenie wzgledem specjalnego uktadu ptaszczyzn. Przed-
stawiony opis matematyczny uogdlnionych powierzchni o statym nachyleniu umozliwia twor-
zenie roznych takich powierzchni i ich modelowanie na komputerze.
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