Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In arid regions with increasing water needs due to growing populations and agriculture, heightened by climate change, groundwater arises as a crucial asset. This research evaluated climate change influence on groundwater potential zones (GPZs) during 2000 and 2014, within the Mostaganem plateau’s alluvial aquifer in Algeria, using a methodology that integrates analytical hierarchy process (AHP), remote sensing (RS) and geographic information system (GIS). Forecasts for 2030 and 2050 were conducted using the QGIS MOLUSCE plugin. Findings reveal a (30.29%) decrease in zones of moderate potential, the vanishing of high potential sectors, alongside a (7.53%) and a (22.1%) rise in fair potential and low potential, respectively, from 2000 to 2014. Between 2014 and 2030, fair and moderate potential decrease by 6.62% and 0.48%, while low potential zones see a 7.47% increase. These shifts are linked to changes in rainfall distribution, and land use land cover (LULC), notably intensive agriculture of herbaceous crops. Slight changes are anticipated between 2030 and 2050, possibly due to the onset of a resilience equilibrium from 2030 onwards. These findings are crucial as a preliminary investigation, highlighting the necessity of optimal groundwater management.
Wydawca
Rocznik
Tom
Strony
72--89
Opis fizyczny
Bibliogr. 79 poz., rys., tab.
Twórcy
- Civil and Environmental Engineering Laboratory, University of Djillali Liabes, BP 89. DZ- 22000. Sidi Bel Abbés, Algeria
autor
- Civil and Environmental Engineering Laboratory, University of Djillali Liabes, BP 89. DZ- 22000. Sidi Bel Abbés, Algeria
autor
- CEDETE Laboratory EA 1210, University of Orleans, 10 Rue de Tours, 45069 Orléans, France
autor
- Laboratory of Management and Water Treatment, Faculty of Architecture and Civil Engineering, University of Science and Technology of Oran-Mohamed Boudiaf, BP 1505, El M’Naouer, Oran 31000, Algeria
- dboudjemline@yahoo.fr
autor
- Civil and Environmental Engineering Laboratory, University of Djillali Liabes, BP 89. DZ- 22000. Sidi Bel Abbés, Algeria
Bibliografia
- 1. Aguilera, E., Guzmán, G., Alonso, A. 2015. Greenhouse gas emissions from conventional and organic cropping systems in Spain. Herbaceous crops, Agronomy for Sustainable Development. https://doi.org/10.1007/s13593-014-0267-9
- 2. Aissaoui, M., Maizi, D., Benhamza, M., Azzouz, K., Belaroui, A., Bengusmia, D. 2023. Identification and mapping of potential recharge in the Middle Seybouse sub-catchment of the Guelma region (North East of Algeria): contribution of remote sensing, multi-criteria analysis, ROC-Curve and GIS. Acque Sotter. - Ital. J. Groundw. 12, 25–37. https://doi.org/10.7343/as-2023-628
- 3. Ait Lahssaine, I., Kabiri, L., Messaoudi, B., Essafraoui, B., El Ouali, M., Ouali, L., Albergel, J., El Amraoui, M., Kassou, A., Essahlaoui, A. 2024. Mapping Favorable Groundwater Potential Recharge Areas Using a GIS-Based Analytical Hierarchical Process – A Case Study of Ferkla Oasis, Morocco. Ecol. Eng. Environ. Technol. 25, 311–325. https://doi.org/10.12912/27197050/182842
- 4. Al-Kharra’a, H.S., Wolf, K.H.A.A., AlQuraishi, A.A., Mahmoud, M.A., Deshenenkov, I., AlDuhailan, M.A., Alarifi, S.A., AlQahtani, N.B., Kwak, H.T., Zitha, P.L.J. 2023. Impact of clay mineralogy on the petrophysical properties of tight sandstones. Geoenergy Sci. Eng. 227, 211883. https://doi.org/10.1016/J.GEOEN.2023.211883
- 5. Arulbalaji, P., Padmalal, D., Sreelash, K. 2019. GIS and AHP Techniques Based Delineation of Groundwater Potential Zones: a case study from Southern Western Ghats, India. Sci. Rep. 9, 1–17. https://doi.org/10.1038/s41598-019-38567-x
- 6. Ashraf, S., Nazemi, A., AghaKouchak, A. 2021. Anthropogenic drought dominates groundwater depletion in Iran. Sci. Rep. 11, 1–10. https://doi.org/10.1038/s41598-021-88522-y
- 7. Aslam, R.A., Shrestha, S., Pandey, V.P. 2018. Groundwater vulnerability to climate change: A review of the assessment methodology. Sci. Total Environ. 612, 853–875. https://doi.org/10.1016/j.scitotenv.2017.08.237
- 8. Ávila-Carrasco, J.R., Hernández-Hernández, M.A., Herrera, G.S., De Jesús Hernández-García, G. 2023. Urbanization effects on the groundwater potential recharge of the aquifers in the southern part of the Basin of Mexico. Hydrol. Res. 54, 663–685. https://doi.org/10.2166/NH.2023.103
- 9. Baghel, S., Tripathi, M.P., Khalkho, D., Al-Ansari, N., Kumar, A., Elbeltagi, A. 2023. Delineation of suitable sites for groundwater recharge based on groundwater potential with RS, GIS, and AHP approach for Mand catchment of Mahanadi Basin. Sci. Rep. https://doi.org/10.1038/s41598-023-36897-5
- 10. Bahri, F., Saibi, H. 2010. Characterisation, classification, and evaluation of some groundwater samples in the Mostaganem area of northwestern Algeria. Arab. J. Geosci. 3, 79–89. https://doi.org/10.1007/s12517-009-0062-0
- 11. Baiche, A., H, S.M., Ablaoui, H. 2015. Surexploitation Des Ressources En Eau De L’Aquifere Du Plateau De Mostaganem. Larhyss , 153–165.
- 12. Balacco, G., Alfio, M.R., Fidelibus, M.D. 2022. Groundwater Drought Analysis under Data Scarcity : The Case of the Salento Aquifer ( Italy ). Sustain. 14, 1–18.
- 13. Basset, C., Abou Najm, M., Ghezzehei, T., Hao, X., Daccache, A. 2023. How does soil structure affect water infiltration? A meta-data systematic review. Soil Tillage Res. 226, 105577. https://doi.org/10.1016/J.STILL.2022.105577
- 14. Belguesmia, S., Yousfi, B., Otmane, T. 2021. Interface ville / campagne et dynamiques des espaces périurbains d ’ une ville. Cah. Geogr. Que. 63, 259–279.
- 15. Bellal, S.-A., Baiche, A., Dari, O. 2020. Sècheresse et fluctuations des ressources en eau souterraines: le cas du plateau de Mostaganem (ouest algérien). Eau Environ. Territ. sociétés 14, 107.
- 16. Benfetta, H., Ouadja, A. 2020. Groundwater overuse in arid areas: case study of syncline BouguiratMostaganem, Algeria. Arab. J. Geosci. 13. https://doi.org/10.1007/s12517-020-05765-1
- 17. Boitt, M., Khayasi, P., Wambua, C. 2023. Assessment of Groundwater Potential and Prediction of the Potential Trend up to 2042 Using GIS-Based Model and Remote Sensing Techniques for Kiambu County. Int. J. Geosci. 14, 1036–1063. https://doi.org/10.4236/ijg.2023.1410053
- 18. Boufekane, A., Meddi, H., Meddi, M. 2020. Delineation of groundwater recharge zones in the Mitidja plain, north Algeria, using multi-criteria analysis. J. Hydroinformatics, 22, 1468–1484. https://doi.org/10.2166/HYDRO.2020.082
- 19. Bouznad, I.E., Guastaldi, E., Zirulia, A., Brancale, M., Barbagli, A., Bengusmia, D. 2020. Trend analysis and spatiotemporal prediction of precipitation, temperature, and evapotranspiration values using the ARIMA models: case of the Algerian Highlands. Arab. J. Geosci. 13. https://doi.org/10.1007/s12517-020-06330-6
- 20. Camarasa-Belmonte, A.M., Rubio, M., Salas, J. 2020. Rainfall events and climate change in Mediterranean environments: an alarming shift from resource to risk in Eastern Spain. Nat. Hazards, 103, 423–445. https://doi.org/10.1007/s11069-020-03994-x
- 21. Castillo, J.L.U., Cruz, D.A.M., Leal, J.A.R., Vargas, J.T., Tapia, S.A.R., Celestino, A.E.M. 2022. Delineation of Groundwater Potential Zones (GWPZs) in a Semi-Arid Basin through Remote Sensing, GIS, and AHP Approaches. Water (Switzerland) 14. https://doi.org/10.3390/w14132138
- 22. Chandrasekara, S.S.K., Kwon, H.H., Vithanage, M., Obeysekera, J., Kim, T.W. 2021. Drought in South Asia: A Review of Drought Assessment and Prediction in South Asian Countries. Atmosphere (Basel). 12, 369. https://doi.org/10.3390/ATMOS12030369
- 23. Chowdhury, A., Jha, M.K., Chowdary, V.M., Mal, B.C. 2008. Integrated remote sensing and GISbased approach for assessing groundwater potential in West Medinipur district, West Bengal, India. Int. J. Remote Sens. 30, 231–250. https://doi.org/10.1080/01431160802270131
- 24. Dar, T., Rai, N., Bhat, A. 2021. Delineation of potential groundwater recharge zones using analytical hierarchy process (AHP). Geol. Ecol. Landscapes, 5, 292–307. https://doi.org/10.1080/24749508.2020.1726562
- 25. Derdour, A., Bouanani, A., Kaid, N., Mukdasai, K., Algelany, A.M., Ahmad, H., Menni, Y., Ameur, H. 2022. Groundwater Potentiality Assessment of Ain Sefra Region in Upper Wadi Namous Basin, Algeria Using Integrated Geospatial Approaches. Sustain. 14, 1–20. https://doi.org/10.3390/su14084450
- 26. Edan, M.H., Maarouf, R.M., Hasson, J. 2021. Predicting the impacts of land use/land cover change on land surface temperature using remote sensing approach in Al Kut, Iraq. Phys. Chem. Earth 123, 103012. https://doi.org/10.1016/j.pce.2021.103012
- 27. El-Tantawi, A.M., Bao, A., Chang, C., Liu, Y. 2019. Monitoring and predicting land use/cover changes in the Aksu-Tarim River Basin, Xinjiang-China (1990–2030). Environ. Monit. Assess. 191. https://doi.org/10.1007/s10661-019-7478-0
- 28. Gantumur, B., Wu, F., Vandansambuu, B., Tsegmid, B., Dalaibaatar, E., Zhao, Y. 2022. Spatiotemporal dynamics of urban expansion and its simulation using CA-ANN model in Ulaanbaatar, Mongolia. Geocarto Int. 37, 494–509. https://doi.org/10.1080/10106049.2020.1723714
- 29. Guermoud, N. 2021. Characterization, Classification and Evaluation of Ground Water in the SouthWest Semi-Arid Region of the Plateau of MOSTAGANEM (Plain of BORDJIAS), 1–12.
- 30. Haied, N., Foufou, A., Khadri, S., Boussaid, A., Azlaoui, M., Bougherira, N. 2023. Spatial and Temporal Assessment of Drought Hazard, Vulnerability and Risk in Three Different Climatic Zones in Algeria Using Two Commonly Used Meteorological Indices. Sustain. 15, 12–14. https://doi.org/10.3390/su15107803
- 31. Hejazi, M., Santos Da Silva, S.R., Miralles-Wilhelm, F., Kim, S., Kyle, P., Liu, Y., Vernon, C., Delgado, A., Edmonds, J., Clarke, L. 2023. Impacts of water scarcity on agricultural production and electricity generation in the Middle East and North Africa. Front. Environ. Sci. 11, 1–16. https://doi.org/10.3389/fenvs.2023.1082930
- 32. Hellwig, J., de Graaf, I.E.M., Weiler, M., Stahl, K. 2020. Large-Scale Assessment of Delayed Groundwater Responses to Drought. Water Resour. Res. 56. https://doi.org/10.1029/2019WR025441
- 33. Hera-Portillo, Á.D. La, López-Gutiérrez, J., Mayo, B., López-Gunn, E., Henriksen, H.J., Gejl, R.N., Zorrilla-Miras, P., Martínez-Santos, P. 2021. An initial framework for understanding the resilience of aquifers to groundwater pumping. Water (Switzerland), 13. https://doi.org/10.3390/w13040519
- 34. Jasechko, S., Seybold, H., Perrone, D., Fan, Y., Shamsudduha, M., Taylor, R.G., Fallatah, O., Kirchner, J.W. 2024. Rapid groundwater decline and some cases of recovery in aquifers globally. Nature, 625, 715–721. https://doi.org/10.1038/s41586-023-06879-8
- 35. Kanema, E.M., Gumindoga, W. 2022. Effects of changing climate on the groundwater potential: A case of Chongwe and Rufunsa Districts along the Chongwe River Catchment, Zambia. Phys. Chem. Earth, 127, 103192. https://doi.org/10.1016/j.pce.2022.103192
- 36. Karmakar, M., Banerjee, M., Mandal, M., Ghosh, D. 2021. Application of AHP for groundwater potential zones mapping in Plateau Fringe Terrain: Study from western province of West Bengal, in: Groundwater and Society: Applications of Geospatial Technology. Springer, Cham, 189–219. https://doi.org/10.1007/978-3-030-64136-8_9
- 37. Kaur, L., Rishi, M.S., Singh, G., Nath Thakur, S. 2020. Groundwater potential assessment of an alluvial aquifer in Yamuna sub-basin (Panipat region) using remote sensing and GIS techniques in conjunction with analytical hierarchy process (AHP) and catastrophe theory (CT). Ecol. Indic. 110, 105850. https://doi.org/10.1016/j.ecolind.2019.105850
- 38. Khodaei, K., Nassery, H.R. 2013. Groundwater exploration using remote sensing and geographic information systems in a semi-arid area (Southwest of Urmieh, Northwest of Iran). Arab. J. Geosci. 6, 1229–1240. https://doi.org/10.1007/S12517-011-0414-4/METRICS
- 39. Kundzewicz, Z.W. 2008. Climate change impacts on the hydrological cycle. Ecohydrol. Hydrobiol. 8, 195–203. https://doi.org/10.2478/V10104-009-0015-Y
- 40. Laoubi, K., Yamao, M. 2012. The Challenge of Agriculture in Algeria: Are Policies Effective? Bull. Agric. Fish. Econ. 3, 66.
- 41. Lapworth, D.J., MacDonald, A.M., Tijani, M.N., Darling, W.G., Gooddy, D.C., Bonsor, H.C., Araguás-Araguás, L.J. 2013. Residence times of shallow groundwater in West Africa: Implications for hydrogeology and resilience to future changes in climate. Hydrogeol. J. 21, 673–686. https://doi.org/10.1007/s10040-012-0925-4
- 42. Mahcer, I., Baahmed, D., Chemirik, C.H.K., Nedjai, R. 2024. Mapping Environmental Impacts in North-Western Algeria through Multivariate SpatioTemporal Analysis Using Remote Sensing and Geographic Information System. Ecol. Eng. Environ. Technol. 25, 42–60.
- 43. Maizi, D., Boufekane, A., Busico, G. 2023. Identification of groundwater potential zones using geospatial techniques and analytical hierarchy process (AHP): case of the middle and high Cheliff basin, Algeria. Appl. Geomatics, 15, 1005–1017. https://doi.org/10.1007/s12518-023-00536-5
- 44. Mallick, J., Khan, R.A., Ahmed, M., Alqadhi, S.D., Alsubih, M., Falqi, I., Hasan, M.A. 2019. Modeling Groundwater Potential Zone in a Semi-Arid Region of Aseer Using Fuzzy-AHP and Geoinformation Techniques. Water 11, 2656. https://doi.org/10.3390/w11122656
- 45. McHugh, M.L. 2012. Lessons in biostatistics interrater reliability : the kappa statistic. Biochem. Medica 22, 276–282.
- 46. Mensah, J.K., Ofosu, E.A., Yidana, S.M., Akpoti, K., Kabo-bah, A.T. 2022. Integrated modeling of hydrological processes and groundwater recharge based on land use land cover, and climate changes: A systematic review. Environ. Adv. 8, 100224. https://doi.org/10.1016/j.envadv.2022.100224
- 47. Moharir, K.N., Pande, C.B., Gautam, V.K., Singh, S.K., Rane, N.L. 2023. Integration of hydrogeological data, GIS and AHP techniques applied to delineate groundwater potential zones in sandstone, limestone and shales rocks of the Damoh district, (MP) central India. Environ. Res. 228, 115832. https://doi.org/10.1016/J.ENVRES.2023.115832
- 48. Moodley, T., Seyam, M., Abunama, T., Bux, F. 2022. Delineation of groundwater potential zones in KwaZulu-Natal, South Africa using remote sensing, GIS and AHP. J. African Earth Sci. 193, 104571. https://doi.org/10.1016/J.JAFREARSCI.2022.104571
- 49. Morgan, H., Hussien, H.M., Madani, A., Nassar, T. 2022. Delineating Groundwater Potential Zones in Hyper-Arid Regions Using the Applications of Remote Sensing and GIS Modeling in the Eastern Desert, Egypt. Sustain. 14. https://doi.org/10.3390/su142416942
- 50. Muhammad, R., Zhang, W., Abbas, Z., Guo, F., Gwiazdzinski, L. 2022. Spatiotemporal Change Analysis and Prediction of Future Land Use and Land Cover Changes Using QGIS MOLUSCE Plugin and Remote Sensing Big Data: A Case Study of Linyi, China. Land, 11. https://doi.org/10.3390/land11030419
- 51. Murmu, P., Kumar, M., Lal, D., Sonker, I., Singh, S.K. 2019. Delineation of groundwater potential zones using geospatial techniques and analytical hierarchy process in Dumka district, Jharkhand, India. Groundw. Sustain. Dev. 9, 100239. https://doi.org/10.1016/J.GSD.2019.100239
- 52. Nemer, Z., Khaldaoui, F., Benaissa, Z., Belaroui, A., Goumrasa, A., Akziz, D., Djeddi, M. 2023. A combined GIS, remote sensing, and geoelectrical method for groundwater prospect assessment and aquifer mapping in El-Hamiz Sub-watershed, Algiers, Algeria. Environ. Earth Sci. 82, 1–21. https://doi.org/10.1007/s12665-023-10746-0
- 53. Owolabi, S.T., Madi, K., Kalumba, A.M., Orimoloye, I.R. 2020. A groundwater potential zone mapping approach for semi-arid environments using remote sensing (RS), geographic information system (GIS), and analytical hierarchical process (AHP) techniques: a case study of Buffalo catchment, Eastern Cape, South Africa. Arab. J. Geosci. 13, 1–17. https://doi.org/10.1007/S12517-020-06166-0/FIGURES/5
- 54. Owuor, S.O., Guzha, A.C., Rufino, M.C., Pelster, D.E., Breuer, L. 2016. Groundwater recharge rates and surface runoff response to land use and land cover changes in semi-arid environments. Ecol. Process. 5, 21. https://doi.org/10.1186/s13717-016-0060-6
- 55. Oxford Analytica, O. 2023. Climate change will hit Middle East/North Africa hard, Emerald Expert Briefings. Oxford Analytica.
- 56. Ozegin, K.O., Ilugbo, S.O., Adebo, B. 2024. Spatial evaluation of groundwater vulnerability using the DRASTIC-L model with the analytic hierarchy process (AHP) and GIS approaches in Edo State, Nigeria. Phys. Chem. Earth, Parts A/B/C 103562. https://doi.org/10.1016/J.PCE.2024.103562
- 57. Pande, C.B., Moharir, K.N., Panneerselvam, B., Singh, S.K., Elbeltagi, A., Pham, Q.B., Varade, A.M., Rajesh, J. 2021. Delineation of groundwater potential zones for sustainable development and planning using analytical hierarchy process (AHP), and MIF techniques. Appl. Water Sci. 11, 1–20. https://doi.org/10.1007/s13201-021-01522-1
- 58. Patra, S., Sahoo, S., Mishra, P., Mahapatra, S.C. 2018. Impacts of urbanization on land use /cover changes and its probable implications on local climate and groundwater level. J. Urban Manag. 7, 70–84. https://doi.org/10.1016/j.jum.2018.04.006
- 59. Püts, M., Taylor, M., Núñez-Riboni, I., Steenbeek, J., Stäbler, M., Möllmann, C., Kempf, A. 2020. Insights on integrating habitat preferences in processoriented ecological models – a case study of the southern North Sea. Ecol. Modell. 431, 109189. https://doi.org/10.1016/j.ecolmodel.2020.109189
- 60. Rahman, F., Rahman, M.T.U. 2023. Use of cellular automata-based artificial neural networks for detection and prediction of land use changes in North-Western Dhaka City. Environ. Sci. Pollut. Res. 30, 1428–1450. https://doi.org/10.1007/s11356-022-22079-9
- 61. Raihan, A.T., Bauer, S., Mukhopadhaya, S. 2022. An AHP based approach to forecast groundwater level at potential recharge zones of Uckermark District, Brandenburg, Germany. Sci. Rep. 12, 1–19. https://doi.org/10.1038/s41598-022-10403-9
- 62. Saaty, T.L. 1990. How to make a decision : The Analytic Hierarchy Process. Eur. J. Oper. Res. 48, 9–26.
- 63. Sahabi-Abed, S. 2022. Assessment of future climate projections in algeria using statistical downscaling model. Int. J. Big Data Min. Glob. Warm. 04. https://doi.org/10.1142/s2630534821300013
- 64. Santamouris, M. 2020. Recent progress on urban overheating and heat island research. Integrated assessment of the energy, environmental, vulnerability and health impact. Synergies with the global climate change. Energy Build. https://doi.org/10.1016/j.enbuild.2019.109482
- 65. Sapkota, S., Pandey, V.P., Bhattarai, U., Panday, S., Shrestha, S.R., Maharjan, S.B. 2021. Groundwater potential assessment using an integrated AHP-driven geospatial and field exploration approach applied to a hard-rock aquifer Himalayan watershed. J. Hydrol. Reg. Stud. 37, 100914.
- 66. Seager, R., Liu, H., Henderson, N., Simpson, I., Kelley, C., Shaw, T., Kushnir, Y., Ting, M. 2014. Causes of increasing aridification of the Mediterranean region in response to rising greenhouse gases. J. Clim. 27, 4655–4676. https://doi.org/10.1175/JCLI-D-13-00446.1
- 67. Shao, Z., Huq, M.E., Cai, B., Altan, O., Li, Y. 2020. Integrated remote sensing and GIS approach using Fuzzy-AHP to delineate and identify groundwater potential zones in semi-arid Shanxi Province, China. Environ. Model. Softw. 134, 104868. https://doi.org/10.1016/j.envsoft.2020.104868
- 68. Siziba, N.A., Chifamba, P. 2023. Using geospatial technologies to delineate Ground Water Potential Zones (GWPZ) in Mberengwa and Zvishavane District, Zimbabwe, in: Journal of Groundwater Science and Engineering. 317–332. https://doi.org/10.26599/jgse.2023.9280026
- 69. Somvanshi, S.S., Bhalla, O., Kunwar, P., Singh, M., Singh, P. 2020. Monitoring spatial LULC changes and its growth prediction based on statistical models and earth observation datasets of Gautam Budh Nagar, Uttar Pradesh, India. Environ. Dev. Sustain. 22, 1073–1091. https://doi.org/10.1007/s10668-018-0234-8
- 70. Spinoni, J., Naumann, G., Carrao, H., Barbosa, P., Vogt, J. 2014. World drought frequency, duration, and severity for 1951–2010. Int. J. Climatol. 34, 2792–2804. https://doi.org/10.1002/JOC.3875
- 71. Tarín-Carrasco, P., Petrova, D., Chica-castells, L., Lukovic, J., Rodó, X. 2024. Assessment of Future Precipitation Changes in Mediterranean Climate Regions from CMIP6 ensemble. EGUsphere 1–34.
- 72. Taylor, R., Scanlon, B., Döll, P., Rodell, M., Beek, R. V, Wada, Y., Longuevergne, L., Leblanc, M., Famiglietti, J., Edmunds, M., Konikow, L., Green, T., Chen, J., Taniguchi, M., Bierkens, M., MacDonald, A., Fan, Y., Maxwell, R., Yechieli, Y., Gurdak, J., Allen, D., Shamsudduha, M., Hiscock, K., Yeh, P., Holman, I., Treidel, H. 2013. Ground water and climate change. Nat. Clim. Chang. 3, 322–329. https://doi.org/10.1038/NCLIMATE1744
- 73. Touitou, M., Abul Quasem, A.-A. 2018. Climate change and water resources in Algeria: vulnerability, impact and adaptation strategy. Econ. Environ. Stud. 18, 411–429. https://doi.org/10.25167/ees.2018.45.23
- 74. Tuel, A, Eltahir, E.A.B. 2020. Why Is the Mediterranean a Climate Change Hot Spot ? J. Clim. 33, 5829– 5843. https://doi.org/10.1175/JCLI-D-19-0910.1
- 75. Vandecasteele, I., Baranzelli, C., Perpia, C., Jacobs-Crisioni, C., Aurambout, J.-P., Lavalle, C., European Commission. Joint Research Centre. 2016. An analysis of water consumption in Europe’s energy production sector : the potential impact of the EU energy reference scenario 2013 (LUISA configuration 2014). https://doi.org/10.2791/90068
- 76. Wakode, H.B., Baier, K., Jha, R., Azzam, R. 2018. Impact of urbanization on groundwater recharge and urban water balance for the city of Hyderabad, India. Int. Soil Water Conserv. Res. 6, 51–62. https://doi.org/10.1016/J.ISWCR.2017.10.003
- 77. Wu, W.Y., Lo, M.H., Wada, Y., Famiglietti, J.S., Reager, J.T., Yeh, P.J.F., Ducharne, A., Yang, Z.L. 2020. Divergent effects of climate change on future groundwater availability in key midlatitude aquifers. Nat. Commun. 11, 1–9. https://doi.org/10.1038/s41467-020-17581-y
- 78. Zhang, M., Zhang, C., Kafy, A. Al, Tan, S. 2021. Simulating the Relationship between Land Use/Cover Change and Urban Thermal Environment Using Machine Learning Algorithms in Wuhan City, China. L. 2022, 11(1), 14. https://doi.org/10.3390/LAND11010014
- 79. Zomlot, Z., Verbeiren, B., Huysmans, M., Batelaan, O. 2017. Trajectory analysis of land use and land cover maps to improve spatial–temporal patterns, and impact assessment on groundwater recharge. J. Hydrol. 554, 558–569. https://doi.org/10.1016/J.JHYDROL.2017.09.032
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3355a47a-cbae-4f16-8f8e-8eb9c2d8ace1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.