PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Skinfold creep under load of caliper. Linear visco- and poroelastic model simulations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: This paper addresses the diagnostic idea proposed in [11] to measure the parameter called rate of creep of axillary fold of tissue using modified Harpenden skinfold caliper in order to distinguish normal and edematous tissue. Our simulations are intended to help understanding the creep phenomenon and creep rate parameter as a sensitive indicator of edema existence. The parametric analysis shows the tissue behavior under the external load as well as its sensitivity to changes of crucial hydro-mechanical tissue parameters, e.g., permeability or stiffness. Methods: The linear viscoelastic and poroelastic models of normal (single phase) and oedematous tissue (twophase: swelled tissue with excess of interstitial fluid) implemented in COMSOL Multiphysics environment are used. Simulations are performed within the range of small strains for a simplified fold geometry, material characterization and boundary conditions. The predicted creep is the result of viscosity (viscoelastic model) or pore fluid displacement (poroelastic model) in tissue. Results: The tissue deformations, interstitial fluid pressure as well as interstitial fluid velocity are discussed in parametric analysis with respect to elasticity modulus, relaxation time or permeability of tissue. The creep rate determined within the models of tissue is compared and referred to the diagnostic idea in [11]. Conclusions: The results obtained from the two linear models of subcutaneous tissue indicate that the form of creep curve and the creep rate are sensitive to material parameters which characterize the tissue. However, the adopted modelling assumptions point to a limited applicability of the creep rate as the discriminant of oedema.
Rocznik
Strony
39--48
Opis fizyczny
Bibliogr. 14 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Mechanics and Applied Computer Science, Kazimierz Wielki University Bydgoszcz, Poland
autor
  • Faculty of Civil Engineering, Bauhaus-Universität Weimar, Weimar, Germany
autor
  • Institute of Mechanics and Applied Computer Science, Kazimierz Wielki University Bydgoszcz, Poland
Bibliografia
  • [1] ARMSTRONG C.G., LAI W.M., MOW V.C., An Analysis of the Unconfined Compression of Articular Cartilage, J. Biomech. Eng., 1984, Vol. 106(2), 165–173.
  • [2] BANKS H.T., HU S., KENZ Z.R., A Brief Review of Elasticity and Viscoelasticity for Solids, Adv. Appl. Math. Mech., 2011, Vol. 3, 1–51.
  • [3] BATES D.O., LEVICK J.R., MORTIMER P.S., Quantification of rate and depth of pitting in human edema using an electronic tonometer, Lymphology, 1994, Vol. 27, 159–172.
  • [4] BIOT M.A., General theory of three – dimensional consolidation, J. Appl. Phys., 1941, Vol. 12, 155–164.
  • [5] DETOURNAY E., CHENG A.H.D., Fundamentals of poroelasticity, Chapter 5 in Comprehensive Rock Engineering: Principles, Practice and Projects, Analysis and Design Method, C. Fairhurst (ed.), Pergamon Press, 1993, Vol. II, 113–171.
  • [6] GEERLIGS M., A literature review of the mechanical behavior of the stratum corneum, the living epidermis and the subcutaneous fat tissue, Technical Note 2006, PR-TN2006/00450, Koninklijke Philips Electronics N.V.
  • [7] KACZMAREK M., OLSZEWSKI W.L., NOWAK J., ZALESKA M., The hydromechanics of edema fluid in lymphedematous lower limb during intermittent pneumatic compression, Lymphatic Research and Biology, 2015, DOI: 10.1089/lrb.2013.0047.
  • [8] KACZMAREK M., SUBRAMANIAM R.P., NEFF S.R., The hydromechanics of hydrocephalus: Steady-state solutions for cylindrical geometry, Bull. Math. Biol., 1997, Vol. 59, 295–323.
  • [9] NOWAK K., Evaluation of axillary fold edema in women with breast cancer according to chosen clinical agents, PhD Thesis, Nicolaus Copernicus University, Poland, 2014.
  • [10] OLSZEWSKI W.L., Physiology – lymph flow, in Lymphedema. A concise compendium of theory and practice, B.B. Lee, J. Bergan, S.G. Rockson (eds.), Springer 2011, Chap. 9.
  • [11] ROBERTS C.C., LEVICK J.R., STANTON A.W.B., MORTIMER P.S., Assessment of truncal edema following breast cancer treatment using modified harpenden skinfold calipers, Lymphology, 1995, Vol. 28, 78–88.
  • [12] SMITH J.H., HUMPHREY A.C., Interstitial transport and transvascular fluid exchange during infusion into brain and tumor tissue, Microvascular Research, 2007, Vol. 73, 58–73.
  • [13] STANTON A.W.B, BADGER C., SITZIA J., Non-invasive assessment of the lymphedematous limb, Lymphology, 2000, Vol. 33, 122–135.
  • [14] WIIG H., SWARTZ M.A., Interstitial fluid and lymph formation and transport: physiological regulation and roles in inflammation and cancer, Physical Rev., 2012, Vol. 92, 1005– 1060..
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3354c837-b44c-4e5f-8fde-6cdb35e73711
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.