Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A Cu-1Cr-0.1Zr alloy has been subjected to ECAP processing via route Bc and aging at 250-800°C. Electron BackScatter diffraction (EBSD), Transmission Electron Microscopy (TEM) and X-Ray Diffraction Line Profile Analysis (XRDLPA) techniques have been used to unveil some peculiarities of the grain and subgrain structure with a special emphasis on the comparison of the grain size estimated by the three techniques. For the alloy ECAP processed and aged up to 16 passes, the grain size (from EBSD, 0.2 < d < 5 μm), subgrain size (from TEM, d ~ 0.75 μm) and “apparent” average crystallite size (from XRDLPA, d < 0.25 μm) are manifestly different. The results were compared to the published data and analyzed based on the fundamental aspects of these techniques.
Wydawca
Czasopismo
Rocznik
Tom
Strony
9--16
Opis fizyczny
Bibliogr. 58 poz., fot., rys.
Twórcy
autor
- University of Sciences and Technology Houari Boumediene, Faculty of Physics, Bp 32 El Alia, Bab Ezzouar, Algiers, Algeria
autor
- University of Sciences and Technology Houari Boumediene, Faculty of Physics, Bp 32 El Alia, Bab Ezzouar, Algiers, Algeria
autor
- University Paris-Saclay, Icmmo, 91405, Orsay, France
autor
- University Paris-Saclay, Icmmo, 91405, Orsay, France
autor
- University Paris-Saclay, Icmmo, 91405, Orsay, France
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Str., 30-059 Krakow, Poland
autor
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Str., 30-059 Krakow, Poland
autor
- University of Sciences and Technology Houari Boumediene, Faculty of Physics, Bp 32 El Alia, Bab Ezzouar, Algiers, Algeria
Bibliografia
- [1] D.J. Edwards, B.N. Singh, S. Tahtinen, Effect of heat treatments on precipitate microstructure and mechanical properties of a CuCrZr alloy. J. Nucl. Mater. 67-370, 904-909 (2007). DOI: https://doi.org/10.1016/j.jnucmat.2007.03.064
- [2] I.S. Batra, G.K. Dey, U.D. Kulkami, S. Banerjee, Microstructure and properties of a Cu-Cr-Zr alloy. J. Nucl. Mater. 299, 91-100 (2001). DOI: https://doi.org/10.1016.50022-3115(01)00691-2
- [3] I.S. Batra, G.K. Dey, U.D. Kulkarni: S. Banerjee, Precipitation in a Cu-Cr-Zr alloy. Mater. Sci. Eng. A 356, 32-36 (2002). DOI: https://doi.org/10.1016.50921-5093(02)00852-3
- [4] H. Fuxiang, M. Jusheng, N. Honglong, G. Zhiting, L. Chao, G. Shumei, Y. Xuetao, W. Tao, L. Hong, L. Huafen, Analysis of phases in a Cu-Cr-Zr alloy. Scripta Mater. 48, 97-102 (2003). DOI: https://doi.org/10.1016.51359-6462(02)00353-6
- [5] A. Vinogradov, V. Patlan, Y. Suzuki, K. Kitagawa, V.I. Kopylov, Structure and properties of ultra-fine grain Cu-Cr-Zr alloy produced by equal-channel angular pressing. Acta Mater. 50, 1639-1651 (2002). DOI: https://doi.org/10.1016.51359-6454(01)00437-2
- [6] A. Vinogradov, Y. Suzuki, T. Ishida, K. Kitagawa. V.I. Kopylov, Effect of Chemical Composition on Structure and Properties of Ultrafine Grained Cu-Cr-Zr Alloys Produced by Equal-Channel Angular Pressing. Mater. Trans. 45, 2187-2191 (2004). DOI: https://doi.org/10.2320/MATERTRANS.45.2187
- [7] A. Vinogradov, K. Kitagawa, V.I. Kopylov, Fracture and Fatigue Resistance of Ultrafine Grain CuCrZr Alloy Produced ECAP. Mater. Sci. Forum 503-504, 811-816 (2006). DOI: https://doi.org/10.4028/www.scientific.net/MSF.503-504.811
- [8] Y.I. Bourezg. K. Abib, H. Azzeddine, D. Bradai. Investigation of recrystallization kinetics in hot-rolled Mg-La alloy using differential scanning calorimetry technique. Thermochim. Acta 686. 178550 (2020). DOI: https://doi.org/10.1016/j.tca.2020.178550
- [9] H. Azzeddine, B. Mehdi, L. Hennet, D. Thiaudiere, B. Alili, M. Kawasaki, T.G. Langdon, D. Bradai, An in situ synchrotron X-ray diffraction study of precipitation kinetics in a severely deformed Cu-Ni-Si alloy. Mater. Sci. Eng. A 597, 288-294 (2014). DOI: https://doi.org/10.1016/j.msea.2013.12.092
- [10] N. Liang, J. Liu, Y. Wang, J. Tao Wang, Y. Zhao, Y. Zhu, A multiscale architectured CuCrZr alloy with high strength, electrical conductivity and thermal stability. J. Alloys Compd. 735, 25 1389-1394 (2018). DOI: https://doi.org/10.1016/j.jallcom.2017.11.309
- [11] K. Abib, H. Azzeddine, K. Tirsatine, T. Baudin, A.l. Helbert, F. Brisset, B. Alili, D. Bradai, Thermal stability of Cu-Cr-Zr alloy processed by equal-channel angular pressing. Mater. Charact. 118, 527-534 (2016). DOI: https://doi.org/10.1016/J.MATCHAR.2016.07.006
- [12] K. Abib, J.A.M. Balanos, B. Alili, D. Bradai, On the microstructure and texture of Cu-Cr-Zr alloy after severe plastic deformation by ECAP. Mater. Charact. 112, 252-258 (2016). DOI: https://doi.org/10.1016/J.MATCHAR.2015.12.026
- [13] M.J. Zehetbauer, Y.T. Zhu, (Eds.) Bulk Nanostructured Materials, Wiley-VCH, Weiheim, Germany, 2009.
- [14] A.Y. Khereddine, F. Hadj Larbi, M. Kawasaki, T. Baudin, D. Bradai, T.G. Langdon, An examination of microstructural evolution in a Cu-Ni-Si alloy processed by HPT and ECAP. Mater. Sci. Eng. A 576, 149-155 (2013). DOI: https://doi.org/10.1016/j.msea.2013.04.004
- [15] F. Hadj Larbi, H. Azzeddine, T. Baudin, F. Brisset, A-L. Helbert M. Kawasaki, D. Bradai, T.G. Langdon, Microstructure and texture evolution in a Cu-Ni-Si alloy processed by equal-channel angular pressing. J. Alloys Compd. 638, 25, 88-94 (2015). DOI: https://doi.org/10.1016/j.jallcom.2015.03.062
- [16] K. Tirsatine, H. Azzeddine, T. Baudin, A.-L. Helber, B. Alili, D. Bradai, Texture and microstructure evolution of Fe-Ni alloy after accumulative roll bonding. J. Alloys Compd. 610, 352-360 (2014). DOI: https://doi.org/10.1016/j.jallcom.2014.04.173
- [17] S. Boudekhani, H. Azzeddine, K. Tirsatine, T. Baudin, A.-L. Helbert, F. Brisset, B. Alili, D. Bradai, Microstructure, Texture, and Mechanical Properties of Ni-W Alloy After Accumulative Roll Bonding. J. of Mater. Eng. and Perf. (2018). DOI: https://doi.org/10.1016/J.JALLCOM.2014.04.173
- [18] S. Koriche, S. Boudekhani-Abbas, H. Azzeddine, K. Abib, A.-L. Helbert, F. Brisset, T. Baudin, D. Bradai, On the groove pressing of Ni-W alloy: microstructure, texture and mechanical properties evolution. Kovove Mater. 56, 313-323 (2018). DOI: https://doi.org/10.4149/km_2018_5_313
- [19] F. Bachmann, R. Hielsher, H. Schaeben, Texture Analysis with MTex, Free and OpenSource Software Toolbox; Solid State Pheno. 160, 6-68 (2010). DOI: https://doi.org/10.4028/www.scientific.net/SSP.160.63
- [20] P. Scardi, M. Léoni, Whole Powder Pattern Modelling. Acta Cryst. Section A58, 190-200 (2002). DOI: https://doi.org/10.1107/S0108767301021298
- [21] P. Scardi, M. Léoni, Diffraction Analysis of the Microstructure of Materials in E.J. Mittemeijer & P. Scardi (Ed.), Berlin Springer (2004).
- [22] D. Balzar, N.C. Popa, Diffraction Analysis of the Microstructure of Materials in E.J. Mittemeijer & P. Scardi (ed.), Berlin Springer (2004).
- [23] W. Rostoker, J.R. Dvorak, Interpretation of Metallographic Structures, Academic Press Inc. (London) Ltd. (1965).
- [24] www.edax.com, OIM AnalysisTM/help.
- [25] K.X. Wei, W. Wei, F. Wang, Q.B. Du, I. Alexandrov, J. Hu, Microstructure, mechanical properties and electrical conductivity of industrial Cu-0.5% Cr alloy processed by severe plastic deformation. Mater. Sci. Eng. A 528, 1478-1484 (2014). DOI: https://doi.org/10.1016/j.msea.2010.10.059.
- [26] J. Wongsa-Ngam, M. Kawasaki,Y. Zhao, T.G. Langdon, Microstructure evolution and mechanical properties of a Cu-Zr alloy processed by high-pressure torsion. Mater. Sci. Eng. A528, 7715-7722 (2011). DOI: https://doi.org/10.1016/j.msea.2011.06.056
- [27] R.Z. Valiev, A.A. Nazarov, In: M.J. Zehetbauer, Y.T. Zhu, (Eds.) Bulk Nanostructured Materials, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2009).
- [28] R.Z. Valiev, E.V. Kozlov, Ivanov, F. Yu, J. Lian, A.A. Nazarov, B. Baudelet, Deformation behaviour of ultra-fine-grained copper. Acta Metall. Mater. 42, 2467 (1994). DOI: https://doi.org/10.1016/0956-7151(94)90326-3
- [29] B. Alili, H. Azzeddine, K. Abib, D. Bradai, Texture evolution in AZ91 alloy after hot rolling and annealing. Trans. Nonferrous Met. Soc. China. 23, 2215-222 1(2013). DOI: https://doi.org/10.1016/S1003-6326(13)62720-X
- [30] J. Gubicza, L. Balogh, R.J. Hellmig, Y. Estrin, T. Ungar, Dislocation structure and crystallite size in severely deformed copper by X-ray peak profile analysis. Mater. Sci. Eng. A 400-401, 334-338 (2005). DOI: https://doi.org/10.1016/j.msea.2005.03.042
- [31] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation. Progr. Mater. Sci. 45, 103-189 (2000). DOI: https://doi.org/10.1016/S0079-6425(99)00007-9
- [32] V.M. Segal, V.I. Reznikov, V.I. Kopylov, D.A. Pavlik, V.F. Malyshev, Processes of plastic structure formation of metals. Science and Engineering Publishers House, Minsk, 1994.
- [33] Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon, An investigation of microstructural evolution during equal-channel angular pressing. Acta Mater. 45, 4733 (1997). DOI: https://doi.org/10.1016/S1359-6454(97)00100-6
- [34] S.D. Terhune, Z. Horita, M. Nemoto, Y. Li, T.G. Langdon, T.R. Mcnelley. In T. Sakai, H.G. Suzuki (Ed.), Proceedings of the 4th International Conference on Recrystallization and Related Phenomena. The Japan Institute of Metals, 1999.
- [35] F. Brisset, EBSD, Analyse et diffraction des électrons rétrodiffusés, Application et techniques couplées, EDP Sciences, France (2015).
- [36] Y.J. Chen, J. Hjelen, H.J. Roven, Application of EBSD technique to ultrafine grained and nanostructured materials processed by severe plastic deformation: Sample preparation, parameters optimization and analysis. Trans. Nonferrous Met. Soc. China 22, 1801-1809 (2012). DOI: https://doi.org/10.1016/S1003-6326(11)61390-3
- [37] T. Hebesberger, H.P. Stûwe, A. Vorhauer, F. Wetscher, R. Pippan, Structure of Cu deformed by high pressure torsion. Acta Mater. 53, 393-402 (2005). DOI: https://doi.org/10.1016/j.actamat.2004.09.043
- [38] A.A. Nazarov, A.E. Romanov, R.Z. Valiev, On the structure, stress fields and energy of nonequilibrium grain boundaries. Acta Metall. Mater. 41, 1033-1040 (1993). DOI: https://doi.org/10.1016/0956-7151(93)90152-I
- [39] N.A. Akhmadeev, N.P. Kobelev, R.R. Mulgukov, Y.M Seifer, R.Z. Valiev, The effect of heat treatment on the elastic and dissipative properties of copper with the submicrocrystalline structure. Acta Metall. Mater. 41, 1041-1046 (1993). DOI: https://doi.org/10.1016/0956-7151(93)90153-J
- [40] F.J. Humphreys, M. Hatherley, Recrystallization and Related Phenomena, Oxford, Pergamon, 1995.
- [40] K. Kapoor, D. Lahiri, I.S. Batra, S.V.R. Rao, T. Sanyal, X-ray diffraction line profile analysis for defect study in Cu-1 wt.% Cr-0.1 wt.% Zr alloy. Mater. Char. 54, (2) 131-140 (2005). DOI: https://doi.org/10.1016/j.matchar.2004.09.009
- [41] R. Kočiško, T. Kvačkaj, A. Kováčová, D. Šimčák, R. Bidulský, M. Lupták, M. Vlado, I. Pokorný, The mechanical properties of OFHC copper and CuCrZr alloys after asymmetric rolling at ambient and cryogenic temperatures, Open Eng. 8, 426-431 (2018). DOI: https://doi.org/10.1515/eng-2018-0041
- [42] R.Z. Valiev, A.V. Korznikov, R.R. Mulyukov, Structure and properties of ultrafine-grained materials produced by severe plastic deformation. Mater. Sci. Eng. A168, 141-148 (1993). DOI: https://doi.org/10.1016/0921-5093(93)90717-S
- [43] R.Z. Valiev, V.Y. Gertsman, O.A. Kaibyshev, The role of non-equilibrium grain boundary structure in strain induced grain boundary migration (recrystallization after small strains). Scr. Metall. 17, 853-856 (1983). DOI: https://doi.org/10.1016/0036-9748(83)90248-X
- [44] Z. Horita, D.J. Smith, M. Nemoto, R.Z. Valiev, T.G. Langdon, Observations of grain boundary structure in submicrometer-grained Cu and Ni using high-resolution electron microscopy. J. Mater. Res. 13, 446-450 (1998). DOI: https://doi.org/10.1557/JMR.1998.0057
- [45] Z. Horita, D.J. Smith, M. Furukawa, M. Nemoto, R.Z. Valiev, T.G. Langdon, An investigation of grain boundaries in submicrometer-grained Al-Mg solid solution alloys using high-resolution electron microscopy. J. Mater. Res. 11, 1880-1890 (1996). DOI: https://doi.org/10.1557/JMR.1996.0239
- [46] J. Wang, Y. Iwahashi, Z. Horita, M. Furukawa, M. Nemoto, R.Z. Valiev, T.G. Langdon, An investigation of microstructural stability in an Al-Mg alloy with submicrometer grain size. Acta Mater. 44, 2973-2982 (1996). DOI: https://doi.org/10.1016/1359-6454(95)00395-9
- [47] Z. Horita, T. Fujinami, M. Nemoto, T.G. Langdon, Equal-channel angular pressing of commercial aluminum alloys: Grain refinement, thermal stability and tensile properties. Metall. Mater. Trans. A 31, 691-701 (2000). DOI: https://doi.org/10.1007/s11661-000-0011-8
- [48] X.H. An, S.D. Wu, Z.F. Zhang, R.B. Figueiredo, N. Gao, T.G. Langdon, Evolution of microstructural homogeneity in copper processed by high-pressure torsion. Scripta Materialia 63, 560-563 (2010). DOI: https://doi.org/10.1016/j.scriptamat.2010.05.030
- [49] A.P. Zhilyaev, J. Gubicza, G. Nurislamova, Á. Révész, S. Suriñach, M.D. Baró, T. Ungár, Microstructural characterization of ultrafine-grained nickel. Phys. Stat. Sol. (A) 198, 263-271 (2003). DOI: https://doi.org/10.1002/pssa.200306608
- [50] G. Ribarik, J. Gubicza, T. Ungar, Correlation between strength and microstructure of ball-milled Al-Mg alloys determined by X-ray diffraction. Mater. Sci. Eng. A 387-389, 343-347 (2004). DOI: https://doi.org/10.1016/j.msea.2004.01.089.
- [51] Y.T. Zhu, J.Y. Huang, J. Gubicza, T. Ungar, Y.M. Wang, E. Ma, R.Z. Valiev, Nanostructures in Ti processed by severe plastic deformation. J. Mater. Res. 18, 1908-1917 (2003). DOI: https://doi.org/10.1557/JMR.2003.0267
- [52] T. Ungar, J. Gubicza, G. Ribarik, A. Borbely, Crystallite size distribution and dislocation structure determined by diffraction profile analysis: principles and practical application to cubic and hexagonal crystals. J. Appl. Crystallogr. 34, 298-310 (2001). DOI: https://doi.org/10.1107/S0021889801003715
- [53] J. Gubicza I.C. Dragomir, G. Ribarik, Y.T. Zhu, R.Z. Valiev, T. Ungar, Microstructure of severely deformed titanium from X-ray diffraction profile analysis. Mater. Sci. Forum 414-415, 229-234 (2003). DOI: https://doi.org/10.4028/www.scientific.net/MSF.414-415.229
- [54] C.E. Krill, R. Birringer, Estimating grain-size distributions in nanocrystalline materials from X-ray diffraction profile analysis. Phil. Mag. A 77 (8), 621-640 (1998). DOI: https://doi.org/10.1080/01418619808224072
- [55] J.I. Langford, D. Louër, P. Scardi, Effect of a crystallite size distribution on X-ray diffraction line profiles and whole-powder-pattern fitting. J. Appl. Cryst. 33, 964-674 (2000). DOI: https://doi.org/10.1107/S002188980000460X
- [56] N. Armstrong, W. Kalceff, J.P. Cline, J. Bonevich, J. Res. Nat. Inst. Stand. Techn. 2001; Proceedings of Accuracy in Powder Diffraction III; NIST; Gaitherburg, USA (2001).
- [57] J.A. Muñoz, O.F. Higuera, J.A. Benito, D. Bradai, T. Khelfa, R.E. Bolmaro, A. Moreira, J. Jr. Mat. Sci. Eng. A 740-741, 108-120 (2019). DOI: https://doi.org/10.1016/j.msea.2018.10.100
Uwagi
Błędna numeracja bibliografii.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-33517959-0ab4-4449-8065-81c31636d587
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.