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CONTRIBUTION TO RANDOM VIBRATION NUMERICAL 

SIMULATION AND OPTIMISATION OF NONLINEAR MECHANICAL 

SYSTEMS 
 

Summary. This study considered the solution of the stochastic vibration of non-

linear mechanical systems with Gaussian random excitations. It realised a short 

review of linearisations techniques in stochastic dynamics mainly with application 

in the area of truss finite element modelling. The presented method of statistical 

linearisation is applied to numerical testing. In the second part of the article,  the 

sensitivity analysis of the first two stress statistical moments and structural weight 

minimising subjected to the random stress constrains presented by mean value 

and standard deviation was brought to the fore. Cross-sectional areas were used as 

optimising parameters. 
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1. INTRODUCTION 

 

Modelling and analysis of dynamic properties of mechanical systems using linear 

computational tools are often the first approximation of the actual conduct of the investigated 

object. The obtained results must be considered with caution, and we must decide whether 

they are sufficient for us, or we will require more detail and complex study of the issue with 

the consequent formation of a more appropriate mechanical and mathematical model. If at 

least one member in the model is nonlinear, then the whole system acts as nonlinear. 

According to the effect of non-linear members on the dynamic properties, we distinguished 

systems with significant (strong) and a little significant (weak) nonlinearities. Of course, 

much more complex are tasks with significant nonlinearities, where the ambiguity of solution 

causes considerable problems. 

The task difficulty may increase if the inputs to a nonlinear system are characterised as a 

random process or its parameters are random as well, and especially if the investigated 

processes are non-stationary and non-Gaussian [1,25]. Several different methodical 

approaches have been developed to solve such problems, applicable only to certain types of 

tasks. The conditions determining the applicability of individual methods are associated with 

the type of nonlinearity, its location, as well as the characteristics of random processes 

operating in the system [1,25]. 

The most common but simplest nonlinearity is the static transformation (non-inertial), 

characterised by the following equation 

     txty  . (1) 

Equation (1) presents the functional dependency between the restoring force in a spring 

and the spring strain. A mechanical system with nonlinearity solved in a static sense is usually 

a rare phenomenon. In technical practice, we encounter special systems that do not allow 

neglecting the inertial and dissipative effects. This means that equation (1) in general is no 

longer a nonlinear algebraic equation, but a nonlinear differential equation. Kropáč in [14] 

divides the methods of solving such tasks into the methods of a local nature that well 

describes the behaviour of a system in a relatively small surrounding of a certain (working) 

point usually in equilibrium. There are known linearisation approaches that have experienced 

considerable success in various applications in the engineering practice. In contrast, there are 

methods of global nature that describe the behaviour of a system in a broader sense, that is, in 

the entire scope of variables. Solution of a specific task depends on the solvers and their 

ability to identify the nature of the problem and predict the solution. 

As already mentioned, there are a number of independent approaches built on different 

principles that give acceptable results based on certain assumptions. The global approaches 

include analysis of nonlinear dynamic systems using the theory of Markov processes, which 

leads to solving the familiar equation by Fokker-Planck-Kolmogorov (FPK) [2,5]. In practice, 

we often encounter local approaches represented by the method of statistical linearisation in 

various modifications (Krylov, Bogoliubov, Caughey, Bolotin [2], Kazakov [12], Nigam [16], 

Roberts, Spanos [18,23], Elishakoff [7]), method of statistical quadratisation (Spanos, Donley 

[22]), functional method by Volterra and Wiener [14,24]. In addition to the above-mentioned 

methods, which have been the most discussed ones in the recent decade, other methods have 

been developed in the past, such as the asymptotic method by Krylov-Bogoliubov-

Mitropolsky [2,12], suitably adapted methods of the small parameter, especially the 

perturbation version [16], harmonic linearisation [2] and mean values [2]. Thanks to computer 

technology also other methods have been given a green light, based on simple but time-

consuming and computationally intensive approaches. In particular, there are simulation 
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methods in various modifications. Simulation approaches solve dynamic tasks directly in the 

time domain, which is demanding on computation time. If we add to the above the random 

nature of excitation and the need to obtain a complete picture of system behaviour for various 

excitation realisations, then we come to the Monte Carlo method [1,10,19,20]. Other authors 

have explored ways of increasing efficiency by combining the Monte Carlo method with the 

other aforementioned methods (for example, a combination of statistical linearisation and the 

Monte Carlo method [7]). 

 

 

2. METHOD OF EQUIVALENT STATISTICAL LINEARISATION 
 

Equivalent statistical linearisation (ESL) has been used for a relatively long period to deal 

with randomly excited nonlinear systems, especially in the frequency domain. It is an 

approximation method, in which solving a system of nonlinear differential equations is 

replaced by solving an equivalent linear system suitable to obtain the Fourier transform of the 

system. The method was first presented by Krylov and Bogoliubov [2,12], and further 

elaborated by Booton [1,2], Caughey [21], Kazakov [12], Iwan, Yang [22], Spanos [23], then 

evaluated by Roberts and Spanos in [18]. The development of ESL within nonlinear 

stochastic dynamics is also associated with the works of Foeter [23], Malhotra and Penzien 

[24], Iwan and Yang [21], Atalik and Utku [18], Iwan and Mason [24], Brücker and Lin [21], 

as well as many others. Especially, the 1960s to 1980s were a period of enormous increase in 

method applications. 

We obtain the parameters of an equivalent linear system by satisfying a certain pre-

selected criterion, under which we assess the conformity of the original and linearised model 

especially in the outputs that are characterised mainly by statistical moments. By their very 

nature, the presented techniques are a generalisation of deterministic linearisation methods by 

Krylov and Bogoliubov. The most frequently used criteria include: 

 criterion based on energy balance of an actual and equivalent model, 

 criterion of conformity of the corresponding mean values and response dispersions of 

the original and linearised nonlinear function with a random input (less suitable), 

 criterion of the minimum root-mean-square deviation of an actual and approximated 

(linearised, or squared) function. 

 

It should be noted that, on one hand, the advantages of this method certainly include its 

simplicity and admissible estimate of the first two statistical moments, but on the other hand, 

the change in nature of the random variable in the output, for example, the Gaussian output 

does not correspond to the Gaussian input, as contemplated by the method’s theoretical 

foundations. A significant shortcoming of ESL is the possible incompatibility in the spectral 

response of an actual and linearised system (for example, the difference in the characteristics 

of the function of power spectral density, etc.). 

For a system with multiple degrees of freedom, we present a generalised solution 

methodology based on the procedure applied by Spanos and Donley in [20] to the method of 

equivalent statistical quadratisation. Let’s consider a system of nonlinear differential 

equations in the form 

  t
.

fxx,gxKxBxM
...

 )( , (2) 

where M, B, K are the matrices of mass, damping and stiffness of the linear part of the 

system, x(t) is the vector of unknown displacements, f(t) is the vector of random excitation 
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and )(
.

xx,g  is the vector of nonlinear forces that are a function of velocity and displacement. 

Let’s assume the solution 

   ct xmx x  , (3) 

where mx is the vector of displacement mean values, xc is the vector of stationary centered 

displacements that, however, in general do not necessarily have Gaussian character. If we 

substitute (3) into (2), we obtain 

    tcxcxc

.

c fx,xmgxmKxBxM
...









 . (4) 

We calculate the vector of the system response mean values as follows 

 















 

.

xx x,xmgmKm cf

1 , (5) 

where 









.

x x,xmg c  is the mean value of the vector of nonlinear forces, and mf is the 

vector of the mean values of the load forces vector f(t). The load forces vector f(t) can be 

expressed in the form 

        




  dtwttt cf ff hmfmf , (6) 

where fc(t) is the centred load component, of which we assume to have a Gaussian character, 

w(t) is the above-mentioned centred random function with a “white noise” character. Then, 

the excitation power spectral density matrix is 

        





  dtett iT

ff




 ffS
2

1
 or         T

fww

*

f

T

ffff HSHmmS  , (7,8) 

where (*) is the symbol for a complex conjugate (matrix), Sww is the power spectral density of 

the function w(t) = 2() and is equal to 1, Hf () is the Fourier transform of the impulse 

function hf (t). The response centred component can be determined from the equation 

    tt fcccc

.

c c

.

x

..

fmfx,xmgxKxBxM  )( . (9) 

We replace this "original" nonlinear system with an "equivalent linear" system 

  tccccc

.

c fxaxaxKxBxM
.

21

..

 , (10) 

where ai are the equivalent linearisation matrices that we determine from the condition of 

minimum root-mean-square deviation of differences between the functional values of the 

actual and linearised function, that is 

 minee
T . (11) 

Parameter e is thus the vector of residuals defined as follows 

 ccfccxx

.

21

.

xaxamx,xmgmKe  )( . (12) 

By substitution of (12) to the condition (11) we obtain the system 

 NGAXX
T  , (13) 

where the vector T

cc

T ][
.

x,xX   has dimensions 2n1, the symbol < > represents again the 

mean value operator, A is the matrix of linearisation coefficients a1 and a2 with dimension 

2nn in the form 
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 ][ 21

TTT
aaA   (14) 

and the matrix of right-hand sides GN has dimension 2nn and the form 

  XXG  nN g,g ...,1 . (15) 

The system (13) represents n linear systems with 2n unknowns. The resulting equivalent 

system for centred component will be in the form (10). 

In technical practice, we often encounter tasks where input to the system is the power 

spectral density (PSD) matrix of excitation. Then, we calculate the response according to 

known equations for linear systems, that is 

         T

ff

*

xx ekvekv HSHS  , (16) 

where the frequency response of a linearised system is 

        1

12

2 
 aKaBMH  iekv , (17) 

the PSD input matrix is 

       T

fww

*

fff HSHS   (18) 

and Sxx() will naturally be the PSD output (response) matrix, which determines the spectral 

properties of the system and by its integration we determine an estimate of second-order 

statistical moments (variance). The mean value is determined from (5). The actual 

implementation of the calculation can only be carried out iteratively, since the matrices a1 and 

a2 contain information about the first two statistical moments. The task leads to solving 

a system of 2n nonlinear equations, that is to (5) and 

       0mDHHSHmDHD  
max

d,,,, xx

T

ekv

T

fww

*

fxx

*

ekvx






0

)(
1

, (19) 

where Dx is the matrix of variances (we are mainly interested in diagonal elements). It is 

usually challenging to perform the initial estimate of mx and Dx, therefore it is preferable to 

first carry out the calculation only with the linear part of the system, and then calculate the 

matrices a1 and a2 from the results obtained. These matrices then get more specific in each 

iterative step. The calculation is completed when the pre-defined convergence criterion is 

satisfied. 

 

 

3. STATISTICAL LINEARISATION OF GEOMETRICALLY NONLINEAR ROD 

FINITE ELEMENTS 
 

Our aim is to present possible ways of analysing geometrically nonlinear rod systems 

excited by random forces. First, for simplicity, we expressed the total Lagrange’s formulation 

of geometrical nonlinearity of a plane rod (truss) according to [3,26]. We know that for 

relative elongation the following relation applies 

 eNLLe uBB 









2

1
 , (20) 

where ue = [u1, u2, u3, u4] is the unknown nodal displacement vector, the matrices BL and BNL 

have the form 

           2413241322

1
0101

1
uu,uu,uu,uu

a
,,,,

a
NLL 


 BB , (21) 

 

where a is the rod (truss) length. Internal forces in the element are expressed as follows 



148  M. Sága, M. Vaško, M. Handrik, P. Kopas 

 

 eeeNLL

T

NLL

T

NLLv EVV uKuBBBBBBf 



























2

1

2

1

2

1
 . (22) 

Let V be the rod volume (V = const.),  is the normal stress in the element, Ke is the 

nonlinear rod stiffness matrix, fv = [fv1, fv2, fv3, fv4]
T is the vector of internal forces, for which 

applies that fv3 = -fv1 and fv4 = -fv2. Then, the forces fv1 and fv2 will be 

 

,
2

1
2

,1
22

11

2

2

22

2

21






























































































aaaaa

VE
f

aaaaa

VE
f

yxyxyx

v

xyxx

xv






 (23) 

where x = u3 - u1 and x = u4 - u2. Nonlinear relations (23) must be “linearised” in 

accordance with the statistical linearisation method, that is, create a linear equivalent model. 

We are building on the theoretical basis described in the previous subchapter. Let us resolve 

the vectors of displacement and internal forces into a unidirectional component and a centred 

random component, that is 

 




















































cv

cv

mv

mv

v

v

yc

xc

ym

xm

y

x

f

f

f

f

f

f

2

1

2

1

2

1
;












. (24) 

If we apply the criterion (11), we obtain a system of equations (13) that in our case is as 

follows 

  





















































]f[E

]f[E
,

]f[E

]f[E

][E][E

][E][E

yv

xcv

yv

xcv

eekv

ycycxc

ycxcxc













2

2

1

1

2

2

K . (25) 

We solve the system (25) numerically, which generalises the procedure also for application 

to other types of finite elements with the only difference that the dimension of matrices will 

change. In simpler cases, such as ours, (Kekv)e can be determined analytically, as presented in 

[3] by Cherng and Wen. They expressed the internal forces using the following equivalent 

relations 

    yxcmvvyxcmvv cc
a

VE
ffcc

a

VE
ff  





 4322221211 )1(, )1(  (26) 

with the ultimate notation of the equivalent relation between the internal forces vector fv and 

the displacement vector ue  

 












































































































4

3

2

1

4242

2121

4242

2121

2

4

3

2

1

4

3

2

1

)1()1(

)1()1(

c

c

c

c

mv

mv

mv

mv

v

v

v

v

u

u

u

u

cccc

cccc

cccc

cccc

a

VE

f

f

f

f

f

f

f

f

 (27) 

or 

     ceSLlinvmceekvvmv uKKfuKff  . (28) 

The matrices Klin and KSL represent the linear and linearised component of the resulting 

stiffness matrix of plane rod element. We calculate the mean values fv1m and fv2m using the 

following equations (29) and (30) 
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

 ,32

3222
2

2222

232

41

][Ea][Ea][Ea

][E][E
a

VE
f

yxxmy

xxmymyxymxmmv













 (29) 

 



 .2

3222
2

2

232

42

][Ea][E

][E][E
a

VE
f

yxymx

yymxmyxxmymmv













 (30) 

The linearisation coefficients will be as follows: 

c1 = [6a.xm + 3E(x
2) + 3E(y

2)] / 2a2,  c2 = [a.ym + E(xy)] / a
2, 

c3 = [a.ym + E(xy)] / a
2,   c4 = [2a.xm + E(x

2) + 3E(y
2)] / 2a2. 

After applying globalisation "FEM" procedures to compile linearised equations of motion 

we obtain 

       mcgmmglincgekvcc t fffuKuKuBuM
...

 . (31) 

By dividing the equation (6.82) into unidirectional and centred alternating parts we obtain 

a system of equations 

   mgmmglin ffuK     and      tccgekvcc fuKuBuM
...

 . (32, 33) 

From the theory of stochastic processes for systems with Gaussian distribution [4,8], and 

provided that the input power spectral density (PSD) Sff () is known, we can rewrite the 

equation of state (33) into the form 

       0mDHSmDHD  
max

d,,,, uu

T

ekvffuu

*

ekvu






0

1
, (34) 

where the equivalent transfer is calculated as follows 

      12 


gekvekv i KBMH   (35) 

and B is the Rayleigh damping matrix (B = .M + .K). The above procedure was based on 

the total Lagrange formulation of geometric nonlinearity defined for a rod (truss) element. 

However, it is generally known that the effect of nonlinearity under consideration is much 

greater in the case of hyper-elastic materials than in the case of metal materials, where the 

nonlinear component has a character of "weak nonlinearity". 

 

 

4. SENSITIVITY ANALYSIS AND OPTIMISATION 
 

Optimal design in terms of selected properties is an important part of solving problems in 

machine mechanics. Most often, it is a standard strength design, which is not always 

sufficient, even in some cases insufficient. The optimal design may also include spectral 

tuning [8,11,15], or a design from the perspective of other dynamic system properties [7,14]. 

A vast development of optimum design of mainly linear problems in continuum mechanics 

was noted in the 1980s [17]. Optimisation is on the decline in recent years and the main focus 

is on the optimal design of nonlinear systems. 

Therefore, let us consider thinking about optimising the geometrically nonlinear rod (truss) 

structures with random inputs, sensitivity analysis [9], and the suitability of some optimisation 

approaches. The part of many software systems created mainly on the basis of FEM is 

sensitivity analysis. It is part of the gradient optimisation strategy of all types. Gradient 
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information always tells us more about the impact or significance of each optimisation 

variable on the monitored mechanical quantities (displacements, stresses, accelerations, etc.). 

The sensitivity analysis process can be considered as a selection process for the subsequent 

calculation of significant optimisation variables [11,17]. It is the calculation of gradients by 

exact way or by apn proximation procedure. In the first case, the gradient or the gradient 

matrix (sensitivity matrix) is expressed exactly. In the second case, the relevant derivations 

are calculated using known numerical equations. 

Nonlinearity brings considerable complexity to this process, especially in the case of 

analytical expression of the necessary derivation. Let us show how the problems in the case of 

stress sensitivity analysis of the truss element are mentioned. 

We are searching a derivation of the average stress in the j-th element according to the i-th 

cross-sectional area (optimisation variable Xi) 
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where the derivation of fv3mj = - fv1mj according to Xi is generally obtained by derivation of 

(29). The calculation of the stress dispersion derivation in the j-th element of i-th cross-

sectional area will be 
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where the derivative of the variance Dfv3j according to Xi is generally obtained by deriving the 

matrix of dispersions of the internal forces of the j-th element 
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Since (Kekv)j is a function of the displacement dispersion matrix (Du)j and the average 

values of the displacement vector (um)j, it is a very complex task. The centre of the presented 

analysis will be the calculation of the global vector derivation of the displacements average 

values um and the global matrix of displacements variance Du according to Xi. We obtain a 

system of nonlinear algebraic equations by derivation of state equations (5 and 34) 
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The system of equations (39) can only be solved iteratively, which of course reduces the 

effectiveness of this approach. The advantage of exact procedures in sensitivity analysis, 

based on a smaller number of numerical analyses loses the timeliness, hence, numerical 

derivation is more appropriate. 
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5. NUMERICAL EXAMPLE 
 

We will design the cross-sectional areas of the rod structure considering three optimisation 

groups of the same cross-section. The first group of elements consists of rods 8 to 14 with 

cross-sectional area A1, second rods 15 to 25 with area A2 and third rods 1 to 7 with area A3. 

The loading force F has a random character of frequency-limited "Gaussian white noise" with 

PSD: Sff = 15·106 [N2.s] and with average value Fm = 1·105 [N]. The solution will be 

implemented in the frequency range 0,300 [Hz]. Other calculation parameters: material 

damping coefficient c = 10-6, Young modulus E = 2,1·1011 [Pa] and dimensions of the 

construction are a = 0.8 [m], b = 0.8 [m]. 

 

 

 

 

 

 

 

 

 

Fig. 1. Analysed rod (truss) structure 

 

Solving task was formulated as an optimisation problem with stress restrictions. Three 

optimisation variables A1, A2, A3 and the objective function (mass of the structure) were 

considered in the form 

 



n

i

ii AlW
1

 , 

where n is the number of rods,  is the density of the material, li is the length of the i-th 

rod, Ai is the cross-sectional area of the i-th rod with a value of A1, A2 or A3, depending on 

which optimisation group it belongs to. 

The restrictive conditions were bound to the first two statistical moments of stresses in the 

elements with the following values mdov = 50 [MPa] for the average values of stresses in the 

elements and Ddov = 60 [MPa] for the standard deviations. The mathematical notation of the 

restrictive conditions is as follows: 
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where m1, m2, ..., m25 are absolute values of the average stresses in the individual elements. 

- for standard deviations: 
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where 2521  D;....D;D  are standard deviations of stresses in the individual elements. 

The Nelder-Mead optimisation algorithm built in MATLAB was used to solve our 

optimising problem. Selected results of the optimisation process are processed in Tables 1 to 

4 and graphically in Figure 2. 
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Tab. 1 

Objective function 

Construction weight Start value Result value 

W [kg] 1052.3 453.6 

 

Tab. 2 

Design variables for individual optimisation groups 

optimisation variable Start value Result value 

A1 [m2] 6.0·10-3 3.51·10-3 

A2 [m2] 6.0·10-3 1.63·10-3 

A3 [m2] 6.0·10-3 3.43·10-3 

 

Tab. 3 

Maximum of average stress values for each optimisation group 

Average stress Start value Result value 

1m [MPa] 30.21 49.89 

2m [MPa] 14.25 50.13 

3m [MPa] 30.22 50.21 

 

Tab. 4 

Maximum of standard deviations of stresses calculated for individual optimisation groups 

Standard deviation of stress Start value Result value 

1D [MPa] 39.79 57.62 

2D [MPa] 24.53 54.17 

3D [MPa] 38.47 55.83 

 

 
Fig. 2. Analysed rod (truss) structure 

 

Minor changes in stress distribution not only for average values but also for standard 

deviations can be determined from processed results. This was caused by the applied 

geometric nonlinearity as well as the optimisation process itself as documented in Tables 3 

and 4. Consideration of nonlinear analysis computationally complicated the task, but results 

do not differ significantly from linear stochastic analysis. The reason may be that the 

geometric nonlinearity of oscillating rod structures does not appear significantly as in other 

cases. 
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6. CONCLUSION 
 

Methods of nonlinear analysis and optimisation of mechanical systems are certainly 

a topical issue today. Many approaches based on simplifying assumptions of different 

importance have been suggested in the past. Some approaches, especially from the numerical 

point of view, have succeeded, some have lost importance. This also happened in stochastic 

nonlinear dynamics. Due to the strong hardware support, time-based Monte Carlo simulations 

[10] are now preferred, but the application of linearisation techniques remains a useful tool 

for frequency domain solutions. The approaches of statistical linearisation are an interesting 

alternative in connection with finite elements with geometric or material nonlinearity. 

Structural optimisation is an essential part of creating and analysing virtual models of 

structures in construction, engineering or other industries. The results of the presented study 

confirm that the optimum design of nonlinear model parameters is specific compared to linear 

models. Nonlinearities can cause significant changes not only in the optimisation process 

itself [6], but also in the end results, overestimating or underestimating the first two statistical 

moments. In conclusion, the optimal design of a nonlinear mechanical system leads to 

the striking result that cannot be predicted in advance. Therefore, a basic linear analysis of 

simplified physical models alone cannot be relied upon in design. It is necessary to get as 

close as possible to reality and it is often non-linear. 
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