PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Depth Lower Bounds against Circuits with Sparse Orientation

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We study depth lower bounds against non-monotone circuits, parametrized by a new measure of non-monotonicity: the orientation of a function f is the characteristic vector of the minimum sized set of negated variables needed in any DeMorgan circuit (circuits where negations appear only at the leaves) computing f. We prove trade-off results between the depth and the weight/structure of the orientation vectors in any circuit C computing the CLIQUE function on an n vertex graph. We prove that if C is of depth d and each gate computes a Boolean function with orientation of weight at most w (in terms of the inputs to C), then d×ω must be Ω(n). In particular, if the weights are o(n/logk n), then C must be of depth ω(logk n). We prove a barrier for our general technique. However, using specific properties of the CLIQUE function (used in Amano Maruoka (2005)) and the Karchmer-Wigderson framework (KarchmerWigderson (1988)), we go beyond the limitations and obtain lower bounds when the weight restrictions are less stringent. We then study the depth lower bounds when the structure of the orientation vector is restricted. Asymptotic improvements to our results (in the restricted setting) separates NP from NC. As our main tool, we generalize Karchmer-Wigderson games (Karchmer Wigderson (1988)) for monotone functions to work for non-monotone circuits parametrized by the weight/structure of the orientation. We also prove structural results about orientation and prove connections between number of negations and weight of orientations required to compute a function.
Wydawca
Rocznik
Strony
123--144
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
  • Department of Computer Science & Engineering, Indian Institute of Technology, Madras, Chennai 36, India
autor
  • Department of Computer Science & Engineering, Indian Institute of Technology Madras, Chennai 36, India
Bibliografia
  • [1] Koroth S, Sarma J. Depth Lower Bounds Against Circuits with Sparse Orientation. In: Proceedings of 30th International Conference on Computing and Combinatorics (COCOON 2014), volume 8591 of LNCS, pp.596–607. doi:10.1007/978-3-319-08783-2_51.
  • [2] Riordan J, Shannon CE. The Number of Two-Terminal Series-Parallel Networks. Journal of Mathematics and Physics, 1942;21(1-4):83–93. doi:10.1002/sapm194221183. URL http://dx.doi.org/10.1002/sapm194221183.
  • [3] Iwama K, Morizumi H. An Explicit Lower Bound of 5n-o(n) for Boolean Circuits. In: MFCS, volume 2420 of LNCS, pp. 353–364. 2002. ISBN:3-540-44040-2.
  • [4] stad JH. The shrinkage exponent of de Morgan formulas is 2. SIAM Journal on Computing, 1998; 27(1):48–64. doi:10.1137/S0097539794261556.
  • [5] Allender E. Circuit Complexity before the Dawn of the New Millennium. In: Proceedings of FST & TCS, volume 1180 of LNCS, pp. 1–18, 1996. doi:10.1007/3-540-62034-6 33.
  • [6] Allender E. Cracks in the Defenses: Scouting Out Approaches on Circuit Lower Bounds. In: Proc. of 3rd CSR, volume 5010 of LNCS 2008 pp. 3–10. doi:10.1007/978-3-540-79709-8_2.
  • [7] Jukna S. Boolean Function Complexity: Advances and Frontiers, volume 27 of Series: Algorithms and Combinatorics. Springer New York Inc., volume 27 of Algorithms and Combinatorics 2012. ISBN: 978-3-642-24507-7.
  • [8] Razborov A. Lower Bounds for Monotone Complexity of Some Boolean Functions. volume 281 of Soviet Math. Doklady., 1985 pp. 354–357.
  • [9] Alon N, Boppana RB. The Monotone Circuit Complexity of Boolean Functions. Combinatorica, 1987;7(1):1–22. doi:10.1007/BF02579196.
  • [10] Razborov AA. Lower bounds on monotone complexity of the logical permanent. Mathematical Notes, 1985;37(6):485–493. http://dx.doi.org/10.1007/BF01157687.
  • [11] Edmonds J. Paths, Trees, and Flowers. Canad. J. Math., 1965;17:449–467. URL www.cs.berkeley.edu/christos/classics/edmonds.ps.
  • [12] Amano K, Maruoka A. A superpolynomial lower bound for a circuit computing the clique function with at most (1/6) log log n negation gates. SIAM Journal on Computing, 2005;35(1):201–216. doi:10.1137/S0097539701396959.
  • [13] Fischer M. The Complexity of Negation-limited Networks — A Brief Survey. In: Automata Theory and Formal Languages 2nd GI Conference Kaiserslautern, volume 33 of Lecture Notes in Computer Science 1975, pp. 71–82.
  • [14] Jukna S. On the minimum number of negations leading to super-polynomial savings. Information Processing Letters, 2004;89(2):71–74. doi:10.1016/j.ipl.2003.10.003. URL http://www.sciencedirect.com/science/article/pii/S0020019003004770.
  • [15] Raz R, Wigderson A. Monotone circuits for matching require linear depth. Journal of ACM, 1992;39(3):736–744. doi:10.1145/146637.146684.
  • [16] Lovász L. On determinants, matchings, and random algorithms. In: Symposium on Fundamentals of Computation Theory (FCT). 1979 pp. 565–574.
  • [17] Raz R, Wigderson A. Probabilistic Communication Complexity of Boolean Relations. In: Proc. of the 30th FOCS. 1989 pp. 562–567.
  • [18] Impagliazzo R, Paturi R, Saks ME. Size-Depth Tradeoffs for Threshold Circuits. SIAM Journal of Computing, 1997;26(3):693–707. doi:10.1137/S0097539792282965.
  • [19] Amano K, Maruoka A. Potential of the approximation method. In: Proceedings of 37th Annual Symposium on Foundations of Computer Science. 1996 pp. 431–440. URL http://dl.acm.org/citation.cfm?id=874062.875535.
  • [20] Vollmer H. Introduction to Circuit Complexity: A Uniform Approach. Springer New York Inc., 1999. ISBN:3540643109.
  • [21] Karchmer M, Wigderson A. Monotone Circuits for Connectivity Require Super-logarithmic Depth. In: STOC, 1988 pp. 539–550, ISBN:0-89791-264-0.
  • [22] Markov AA. On the Inversion Complexity of a System of Functions. J. ACM, 1958;5(4):331–334. doi:10.1145/320941.320945.
Uwagi
Bibliografia, poz. 4 - błąd w nazwisku autora. Powinno być: J. Håstad
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-334dbef5-7cc3-487b-9c97-95daeabf6d28
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.