Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: In modern industry, titanium is recognised for its remarkable wear resistance and strength. However, its poor thermal conductivity poses a problem because it shortens the life cycle of cutting tools. Researchers have focused on enhancing the service life of cutting-edge tools, cutting production costs by using new coating materials, and identifying appropriate materials for these coatings. Design/methodology/approach: The experimental design involved tests with controlled cutting speeds of 150, 175, 200, and 225 m/min, feed rates of 0.2, 0.25, and 0.30 mm/rev, and cutting depths of 0.5, 1.0, and 1.2 mm. Titanium with a diameter of 25 mm and a length of 200 mm was prepared for the turning test over a machining distance of 20 mm. The chips obtained from the cutting test were observed and analysed using a scanning electron microscope to investigate the effect of the tool coating on the characteristics of the chip formation mechanism. Findings: The study revealed that inserts coated with AlCrSiTiN produced the characteristic of long twisted chips transitioning into continuous chips with shorter twisting distances than uncoated cermet inserts. The uncoated cermet inserts resulted in a greater twisting distance based on an examination of the chips with a scanning electron microscope, revealing more pronounced jaggedness in the fragments produced by the cermet turning inserts, which also possessed a larger average clearance than the inserts coated with AlCrSiTiN and TiAlSiN. Furthermore, the uncoated cermet inserts showed less wear at lower cutting speeds than the other types of inserts. Conversely, the TiAlSiN-coated inserts exhibited less wear at higher cutting speeds than the inserts of different materials. Research limitations/implications: The triangularly shaped inserts were cermet inserts coated with AlCrSiTiN or TiAlSiN via the PVD method and were used for dry turning. Practical implications: Wear of cutting-edge tools is a problem in turning of titanium. Therefore, it is crucial to identify methods to minimise wear and extend the service life considering the investment worthiness. Likewise, efforts are being made to develop new coatings tailored to the materials. Originality/value: The research could provide guidelines for reducing the wear generated in cutting tools and increasing the service life of cutting edges by adjusting the machining parameters.
Wydawca
Rocznik
Tom
Strony
32--41
Opis fizyczny
Bibliogr. 42 poz.
Twórcy
autor
- Department of Mechanical and Industrial Engineering, Faculty of Engineering, Rajamangala University of Technology Krungthep (RMUTK), 2 Nanglin Chi Road, Sathorn, Bangkok 10120, Thailand
autor
- Department of Mechanical and Industrial Engineering, Faculty of Engineering, Rajamangala University of Technology Krungthep (RMUTK), 2 Nanglin Chi Road, Sathorn, Bangkok 10120, Thailand
autor
- Department of Mechanical and Industrial Engineering, Faculty of Engineering, Rajamangala University of Technology Krungthep (RMUTK), 2 Nanglin Chi Road, Sathorn, Bangkok 10120, Thailand
autor
- Department of Mechanical and Industrial Engineering, Faculty of Engineering, Rajamangala University of Technology Krungthep (RMUTK), 2 Nanglin Chi Road, Sathorn, Bangkok 10120, Thailand
autor
- Department of Mechanical and Industrial Engineering, Faculty of Engineering, Rajamangala University of Technology Krungthep (RMUTK), 2 Nanglin Chi Road, Sathorn, Bangkok 10120, Thailand
autor
- Department of Mechanical and Industrial Engineering, Faculty of Engineering, Rajamangala University of Technology Krungthep (RMUTK), 2 Nanglin Chi Road, Sathorn, Bangkok 10120, Thailand
Bibliografia
- [1] H.L. Dorothy, Numerical modelling of coupled adiabatic shear banding and micro-voiding assisted dynamic ductile failure, PhD Thesis, Université Paul Sabatier, Toulouse, 2018. DOI: https://tinyurl.com/ynza7d6
- [2] Q. Ke, D. Xu, D. Xiong, Cutting zone area and chip morphology in high-speed cutting of titanium alloy Ti- 6Al-4V, Journal of Mechanical Science and Technology 31/1 (2017) 309-316. DOI: https://doi.org/10.1007/s12206-016-1233-z
- [3] G. Kiswanto, A. Mandala, M. Azmi, T.J. Ko, The effects of cutting parameters to the surface roughness in high speed cutting of micro-milling titanium alloy Ti-6Al-4V, Key Engineering Materials 846 (2020) 133-138. DOI: https://doi.org/10.4028/www.scientific.net/KEM.846. 133
- [4] X. Qian, X. Duan, Effect of tool microstructure on machining of titanium alloy TC21 based on simulation and experiment, The International Journal of Advanced Manufacturing Technology 111 (2020) 2301-2309. DOI: https://doi.org/10.1007/s00170-020-06248-z
- [5] E.P. de Garmo, J.T. Black, R.A. Kohser, B.E. Klamecki, Materials and Process in Manufacturing, Prentice Hall, Hoboken, New Jersey, 1997. [6] O. Isbilir, E. Ghassemieh, Finite element analysis of drilling of titanium alloy, Procedia Engineering 10 (2011) 1877-1882. DOI: https://doi.org/10.1016/j.proeng.2011.04.312
- [7] C.S. Kumar, P. Zeman, T. Polcar, A 2D finite element approach for predicting the machining performance of nanolayered TiAlCrN coating on WC-Co cutting tool during dry turning of AISI 1045 steel, Ceramics International 46/16/A (2020) 25073-25088. DOI: https://doi.org/10.1016/j.ceramint.2020.06.294
- [8] D. Xu, L. Ding, Y. Liu, J. Zhou, Z. Liao, Investigation of the influence of tool rake angles on machining of Inconel 718, Journal of Manufacturing and Materials Processing 5/3 (2021) 100. DOI: https://doi.org/10.3390/jmmp5030100
- [9] S. Seong, O. Younossi, B.W. Goldsmith, T. Lang, M. Neumann, Titanium: industrial base, price trends, and technology initiatives, RAND, 2009. Available from: https://tinyurl.com/7z8u3bu
- [10] Z. Zhu, J. Sun, J. Li, P. Huang, Investigation on the influence of tool wear upon chip morphology in end milling titanium alloy Ti6Al4V, The International Journal of Advanced Manufacturing Technology 83 (2016) 1477-1485. DOI: https://doi.org/10.1007/s00170-015-7690-1
- [11] A. Li, J. Zang, J. Zhao, Effect of cutting parameters and tool rake angle on the chip formation and adiabatic shear characteristics in machining Ti-6Al-4V titanium alloy, The International Journal of Advanced Manufacturing Technology 107 (2020) 3077-3091. DOI: https://doi.org/10.1007/s00170-020-05145-9
- [12] I. Deiab, S.W. Raza, S. Pervaiz, Analysis of lubrication strategies for sustainable machining during turning of titanium Ti-6Al-4V alloy, Procedia CIRP 17 (2014) 766-771. DOI: https://doi.org/10.1016/j.procir.2014.01.112
- [13] X. Song, A. Li, M. Lv, H. Lv, J. Zhao, Finite element simulation study on pre-stress multi-step cutting of Ti- 6Al-4V titanium alloy, The International Journal of Advanced Manufacturing Technology 104 (2019) 2761-2771. DOI: https://doi.org/10.1007/s00170-019- 04122-1
- [14] K.K. Yesilkaya, K. Yaman, Heat partition effect on cutting tool morphology in orthogonal metal cutting using finite element method, Mechanika 25/4 (2019) 326-334. DOI: https://doi.org/10.5755/j01.mech.25.4.22745
- [15] C.S. Kumar, S.K. Patel, Hard machining performance of PVD AlCrN coated Al2O3/TiCN ceramic inserts as a function of thin film thickness, Ceramics International 43/16 (2017) 13314-13329. DOI: https://doi.org/10.1016/j.ceramint.2017.07.030
- [16] T.S. Ogedengbe, A.P. Okediji, A.A. Yussouf, O.A. Aderoba, O.A. Abiola, I.O. Alabi, O.I. Alonge, The effects of heat generation on cutting tool and machined workpiece, Journal of Physics: Conference Series 1378 (2019) 022012. DOI: https://doi.org/10.1088/1742- 6596/1378/2/022012
- [17] H. Liu, J. Zhang, X. Xu, W. Zhao, Experimental study on fracture mechanism transformation in chip segmentation of Ti-6Al-4V alloys during high-speed machining, Journal of Materials Processing Technology 257 (2018) 132-140. DOI: https://doi.org/10.1016/j.jmatprotec.2018.02.040
- [18] A. Li, J. Pang, J. Zhao, J. Zang, F. Wang, FEM-simulation of machining induced surface plastic deformation and microstructural texture evolution of Ti-6Al-4V alloy, International Journal of Mechanical Sciences 123 (2017) 214-223. DOI: https://doi.org/10.1016/j.ijmecsci.2017.02.014
- [19] Q. Xue, M.A. Meyers, V.F. Nesterenko, Self-organization of shear bands in titanium and Ti-6Al-4V alloy, Acta Materialia 50/3 (2002) 575-596. DOI: https://doi.org/10.1016/S1359-6454(01)00356-1
- [20] T.T. Öpöz, X. Chen, Chip formation mechanism using finite element simulation, Strojniški vestnik – Journal of Mechanical Engineering 62/11 (2016) 636-646. DOI: https://doi.org/10.5545/sv-jme.2016.3523
- [21] T. Mabrouki, C. Courbon, Y. Zhang, J. Rech, D. Nélias, M. Asad, H. Hamdi, S. Belhadi, F. Salvatore, Some insights on the modelling of chip formation and its morphology during metal cutting operations, Comptes Rendus Mécanique 344/4-5 (2016) 335-354. DOI: https://doi.org/10.1016/j.crme.2016.02.003
- [22] J.Q. Xie, A.E. Bayoumi, H.M. Zbib, A study on shear banding in chip formation of orthogonal machining, International Journal of Machine Tools and Manufacture 36/7 (1996) 835-847. DOI: https://doi.org/10.1016/0890-6955(95)00016-X
- [23] S.L.M.R. Filho, R.B.D. Pereira, C.H. Lauro, L.C. Brandão, Investigation and modelling of the cutting forces in turning process of the Ti-6Al-4V and Ti-6Al- 7Nb titanium alloys, The International Journal of Advanced Manufacturing Technology 101 (2019) 2191- 2203. DOI: https://doi.org/10.1007/s00170-018-3110-7
- [24] W. Li, D. Xu, D. Xiong, Q. Ke, Compression deformation in the primary zone during the high-speed cutting of titanium alloy Ti-6Al-4V, The International Journal of Advanced Manufacturing Technology 102 (2019) 4409-4417. DOI: https://doi.org/10.1007/s00170-019-03496-6
- [25] M. Boujelbene, Investigation and modeling of the tangential cutting force of the Titanium alloy Ti-6Al- 4V in the orthogonal turning process, Procedia Manufacturing 20 (2018) 571-577. DOI: https://doi.org/10.1016/j.promfg.2018.02.085
- [26] A. Li, J .Pang, J. Zhao, Crystallographic texture evolution and tribological behavior of machined surface layer in orthogonal cutting of Ti-6Al-4V alloy, Journal of Materials Research and Technology 8/5 (2019) 4598-4611. DOI: https://doi.org/10.1016/j.jmrt.2019.08.004
- [27] C. C. C. Kilicaslan, Modelling of metal cutting by finite element method, MSc Thesis, İzmir Institute of Technology, Turkey, 2009. Available from: https://tinyurl.com/228nstd2
- [28] R. Peng, K. Liu, X. Tang, M. Liao, Y. Hu, Effect of prestress on cutting of nickel-based superalloy GH4169, The International Journal of Advanced Manufacturing Technology 100/1-4 (2019) 813-825. DOI: https://doi.org/10.1007/s00170-018-2746-7
- [29] J. Bergström, Mechanics of Solid Polymers. Theory and Computational Modeling, William Andrew, Norwich, NY, 2015. DOI: https://doi.org/10.1016/C2013-0-15493-1
- [30] G.R. Johnson, W.H. Cook, A constitutive model and data for metals subjected to large strains, high strain rates, and high temperatures, in: Proceedings 7th International Symposium on Ballistics, The Hague, 1983, 541-547. Available from: https://tinyurl.com/bfexzuba
- [31] H.S. Nam, J.S. Kim, J.J. Han, J.W. Ki, Y.J. Kim, Ductile fracture simulation for A106 Gr.B carbon steel under high strain rate loading condition, in: L. Ye (ed), Recent Advances in Structural Integrity Analysis ‒ Proceeding of the International Congress (APCF/SIF- 2014), Woodhead Publishing, Sawston, Cambridge, 2014, 37-41. DOI: https://doi.org/10.1533/9780081002254.37
- [32] A. Gavrus, Constitutive equation for description of metallic materials behavior during static and dynamic loadings taking into account important gradients of plastic deformation, Key Engineering Materials 504- 506 (2012) 697-702. DOI: https://doi.org/10.4028/www.scientific.net/KEM.504- 506.697
- [33] Z. He, Z. Wang, P. Lin, A comparative study on Arrhenius and Johnson-Cook constitutive models for high-temperature deformation of Ti2AlNb-based alloys, Metals 9/2 (2019) 123. DOI: https://doi.org/10.3390/met9020123
- [34] S. Andersson, 4 – Friction and wear simulation of the wheel-rail interface, in: R. Lewis, U. Olofsson (eds), Wheel-Rail Interface Handbook, Woodhead Publishing, Sawston, Cambridge, 2009, 93-124. DOI: https://doi.org/10.1533/9781845696788.1.94
- [35] H. Ernst, E. Merchant, Chip Formation, Friction and Finish, The Cincinnati Milling Machine Co., Cincinnati, Ohio, 1941.
- [36] V.P. Astakhov, Metal cutting mechanics, 1st Edition, CRC Press, Boca Raton, 1998. DOI: https://doi.org/10.1201/9781466571778
- [37] N. Bahiyah Baba, A.S. Ghazali, S.N. Azinee, A.H. Abdul Rahman, S. Sharif, Effect of particle size on surface roughness and morphology of heat-treated electroless Ni-YSZ coating, Journal of Achievements in Materials and Manufacturing Engineering 114/1 (2022) 5-14. DOI: https://doi.org/10.5604/01.3001.0016.1477
- [38] H. Es-sebyty, M. Igouzal, E. Ferretti, Improving stability of an ecological 3D-printed house - a case study in Italy, Journal of Achievements in Materials and Manufacturing Engineering 111/1 (2022) 18-25. DOI: https://doi.org/10.5604/01.3001.0015.7041
- [39] S. Zainal Ariffin, A.M. Efendee, A.A.M. Redhwan, M. Alias, A. Arifuddin, M. Kamrol Amri, M. Mohd Ali, K. Khalil, A.R.M. Aminullah, A.R. Hasnain, N.B. Baba, Optimisation of variation coolant system techniques in machining aluminium alloy Al319, Journal of Achievements in Materials and Manufacturing Engineering 113/2 (2022) 72-77. DOI: https://doi.org/10.5604/01.3001.0016.1432
- [40] N. Bahiyah Baba, A.S. Ghazali, A.H. Abdul Rahman, S. Sharif, Parametric optimisation of microhardness on heat-treated electroless Ni-YSZ cermet coating, Journal of Achievements in Materials and Manufacturing Engineering 112/1 (2022) 33-41. DOI: https://doi.org/10.5604/01.3001.0016.0293
- [41] W. Yang, J. Xiong, Z. Guo, H. Du, T. Yang, J. Tang, B. Wen, Structure and properties of PVD TiAlN and TiAlN/CrAlN coated Ti(C, N)based cermets, Ceramics International 43/2 (2017) 1911-1915. DOI: https://doi.org/10.1016/j.ceramint.2016.10.151
- [42] T. Childs, K. Maekawa, T. Obikawa, Y. Yamane, Metal machining. Theory and application, Butterworth- Heinemann, London, 2000. DOI: https://doi.org/10.1016/C2009-0-23990-0
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-334d95bf-1ad1-4a78-ade0-5b86cad520b6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.