PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Kompleksy platyny typu Markó zawierające n-heterocykliczne ligandy karbenowe o właściwościach supersterycznych

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Markó-type platinum complexes containing bulky n-heterocyclic carbene ligands
Języki publikacji
PL
Abstrakty
EN
Progress in technology implying increasing demand for advanced materials dedicated for specific application has become a driving force stimulating research in different branches of science. It has been estimated that over 90% highly processed compounds have been obtained by the methods whose pivotal processes take place in the presence of catalysts based on transition metal complexes. Although these processes permit obtaining desired products, they are often charged with numerous drawbacks that prevent their implementation in industry. That is why the search for new catalytic systems ensuring high efficiency of final products and a possibility of reaction control is still an important direction of studies. Markó complexes are a group of platinum(0) coordination compounds of type [(NHC)Pt(dvtms)]. Although much attention has been recently attracted to these class of compounds, their number reported in hitherto literature is still limited. Owing to the possibility of wide modification of NHC carbene ligand attached to metal, the structures, and thus also properties, of the final complexes can be relatively easily matched to the requirements of individual catalytic reactions. It is particularly interesting in view of permanent development of new technologies and still increasing demand for new synthetic methods of more sophisticated materials dedicated to specific applications. In this paper, the synthesis and characterization of Markó type platinum(0) complexes containing bulky N-heterocyclic carbene ligands is described and their applications in the synthesis of new and unknown organic and organosilicon compounds are discussed. The main advantages of these complexes are highlighted providing an overview of this fascinating area of research.
Rocznik
Strony
31--53
Opis fizyczny
Bibliogr. 29 poz., schem., tab.
Twórcy
  • Uniwersytet im. Adama Mickiewicza w Poznaniu, Wydział Chemii, ul. Uniwersytetu Poznańskiego 8, 61-614 Poznań
  • Uniwersytet im. Adama Mickiewicza w Poznaniu, Wydział Chemii, ul. Uniwersytetu Poznańskiego 8, 61-614 Poznań
Bibliografia
  • [1] a) F. Glorius, (Ed.) N-heterocyclic carbenes in Transition Metal Catalysis, Springer, 2007; b) S. Diez-Gornález, S.P. Nolan, Coord. Chem. Rev., 2007, 251, 874; c) S.P. Nolan, (Ed.) N-heterocyclic carbenes: Efficient Tools for Organometallic Synthesis, Wiley-VCH, 2014.
  • [2] a) A. Poater, L. Cavallo, Theor. Chem. Acc., 2012, 131, 1155; b) F. Izquierdo, S. Manzini, S.P. Nolan, Chem. Commun., 2014, 50, 14926; b) S. Dierick, D.F. Dewez, I.E. Markó, Organometallics, 2014, 33, 677.
  • [3] a) Huang, J.; Schanz, H.-J.; Stevens E.D.; Nolan, S.P., Organometallics, 1999, 18, 2370; b) A.C. Hillier, W.J. Sommer, B.S. Yong, J.L. Petersen, L. Cavallo, S. P. Nolan, Organometallics, 2003, 22, 4322; c) H. Clavier, S. P. Nolan, Chem. Commun., 2010, 46, 841.
  • [4] A. Poater, B. Cosenza, A. Correa, S. Giudice, F. Ragodne, V. Scarano, L. Cavallo, Eur. J. Inorg. Chem., 2009, 13, 1759.
  • [5] a) I.E. Markó, S. Sterin, О. Buisine, G. Mignani, P. Branlard, B. Tinant, J. Declercq, Science, 2002, 298, 204; b) I. E. Markó, S. Sterin, O. Buisine, G. Berthon, G. Michaud, B. Tinant, J.-P. Declercq, Adv. Synth. Catal., 2004, 346, 1429; c) G. Berthon-Gelloz, O. Buisine, J.-F. Briere, G. Michaud, S. Sterin, G. Mignani, B. Tinant, J.-P. Declercq, D. Chapon, I.E. Markó, J. Organomet. Chem., 2005, 690, 6156; d) G. De Bo, G. Berthon-Gelloz, B. Tinant, I.E. Markó, Organometallics, 2006, 25, 1881; e) J.J. Dunsford, K.J. Cavell, B. Kariuki, J. Organomet. Chem., 2011, 696, 188; f) G.F. Silbestri, J.C. Flores, E. de Jesffls, Organometallics, 2012, 31, 3355; g) A.M. Ruiz-Varilla, E.A. Baquero, G.F. Silbestri, C. Gonzalez-Arellano, E. de Jesffls, J.C. Flores, Dalton Trans., 2015, 44, 18360.
  • [6] B.D. Karstedt, General Electric Company, US3775452A, 1973.
  • [7] G. Berthon-Gelloz, J.-M. Schumers, F. Lucaccioni, B. Tinant, J. Wouters, I.E. Markó, Organometallics, 2007, 26, 5731.
  • [8] a) P. Żak, M. Bolt, J. Lorkowski, M. Kubicki, C. Pietraszuk, ChemCatChem, 2017, 9, 3627; b) P. Żak, M. Bolt, B. Dudziec, M. Kubicki, Daltion Trans., 2019, 48, 2657.
  • [9] M. Hanz, J. Lorkowski, A. Demonceau, L. Deladue, Beilstein J. Org. Chem., 2015, 11, 2318.
  • [10] M. Malinowska, A. Hryniewicka, Wiadomości Chemiczne, 2015, 69, 3.
  • [11] a) S.E. Garcia-Garrido, w: Modern Alkyne Chemistry, Wiley-VCH, 2015, 301; b) B.M Trost, J.T. Masters, Chem. Soc. Rev., 2016, 45, 2212-2238.
  • [12] X.L. Meng, T. Liu, Z.W. Sun, J.C. Wang, F.Z. Peng, Z.H. Shao, Org. Lett., 2014, 16, 3044.
  • [13] M. Yamaguchi, H.J. Park, S. Ishizuka, K. Omata, M. Hirama, M., J. Med. Chem., 1995, 38, 5015.
  • [14] a) Y. Liu, M. Nishiura, Y. Wang, Z. Hou, J. Am. Chem. Soc., 2006, 128, 5592; b) H. Katayama, M. Nakayama, T. Nakano, C. Wada, K. Akamatsu, F. Ozawa, Macromolecules, 2004, 37, 13-17.
  • [15] a) Ch. Yang, S.P. Nolan, J. Org. Chem., 2002, 67, 591; b) A. Coniglio, M. Basetti, S.E. Garcia Garrido, J. Gimeno, Adv. Synth. Catal., 2012, 354, 148.
  • [16] D.B. Cordes, P.D. Lickiss, F. Rataboul, Chem. Rev., 2010, 110, 2081.
  • [17] C. Hartmann-Thompson, Applications of Polyhedral Oligomeric Silsesquioxanes, Springer, London-New York, 2011.
  • [18] a) B. Marciniec, Coord. Chem. Rev., 2005, 249, 2374; b) B. Marciniec, Acc. Chem. Res., 2007, 40, 943; c) B. Marciniec, H. Maciejewski, C. Pietraszuk, P. Pawluć, w: Hydrosilylation: A Comprehensive Review on Recent Advances, (Ed. B. Marciniec), Springer, Berlin, 2009, 410.
  • [19] P. Żak, M. Bolt, M. Kubicki, С. Pietraszuk, Dalton Trans., 2018, 47, 1903.
  • [20] D.S.W. Lim, E.A. Anderson, Synthesis, 2012, 44, 983.
  • [21] a) R.B. Miller, G. McGarvey, J. Org. Chem., 1978, 43, 4424; b) Y. Hatanaka, T. Hiyama, J. Org. Chem., 1988, 53, 918; c) M. Nagao, K. Asano, K. Umeda, H. Katayama, F. Ozawa, J. Org. Chem., 2005, 70, 10511.
  • [22] a) C. Conifer, C. Gunanathan, T. Rinesch, M. Hölscher, W. Leitner, Eur. J. Inorg. Chem., 2015, 333; b) J. Guo, Z. Lu, Angew. Chem. Int. Ed., 2016, 55, 1; c) H. Wen, X. Wan, Z. Huang, Angew. Chem., Int. Ed., 2018, 21, 6319.
  • [23] P. Żak, M. Bolt, C. Pietraszuk, RSC Adv., 2018, 8, 40016.
  • [24] a) J.V.Crivello, D. Bi, Polym Chem., 1994, 32, 683; b) C. Chen, M.B. Hecht, A. Kavara, W.W. Brennessel, B.Q. Mercado, D.J. Weix, P.L. Holland, J. Am. Chem. Soc., 2015, 137, 13244; c) J. Sun, L. Deng, ACS Catal., 2016, 6, 290.
  • [25] a) T. Matsuda, S. Kadowaki, M. Murakami, Chem. Commun., 2007, 2627; b) C. Confier, C. Gunanathan, T. Rinesch, M. Hölscher, W. Leitner, Eur. J. Inorg. Chem., 2015, 333; c) J. Walkowiak, K. Salamon, A. Franczyk, K. Stefanowska, J. Szyling, I. Kownacki, J. Org. Chem., 2019, 84, 4, 2358.
  • [26] A.A. Trifonov, T.P. Spaniol, J. Okuda, Dalton Trans., 2004, 0, 2245-2250.
  • [27] P. Żak, M. Bolt, C. Pietraszuk, Eur. J. Inorg. Chem, 2019, 2455.
  • [28] a) A.K. Singh, M. Darshi, S. Kanvah, J. Phys. Chem. A, 2000, 104, 464; b) A.C. Grimsdale, K.L. Chan, R.E. Martin, P.G. Jokisz, A.B. Holmes, Chem. Rev., 2009, 109, 897.
  • [29] J. Duszczak, K. Mituła, R. Januszewski, P. Żak, B. Dudziec, B. Marciniec, ChemCatChem, 2019, 11. 1086.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-334a9703-0c89-4a8b-87c9-b352e7ec6178
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.