Identyfikatory
Warianty tytułu
Ocena tkanin elektroprzewodzących pod kątem zastosowania jako warstw chroniących przed uszkodzeniami mechanicznymi
Języki publikacji
Abstrakty
The unique characteristic of the electroconductive fabric-based sensor is its ability to generate an electric signal directly in response to external stimuli. A fabric-based layer can protect objects and simultaneously monitor changes in resistance. It was found that the electrical resistance of fabric increases with increased mechanical damage to its surface. As the resistance increases, the fabric loses its protective properties, which may damage the object. The analysis of static characteristics enabled the selection of fabrics characterised by the widest range of electrical resistance, which results in a desirable higher sensitivity factor of the fabric-based sensor.
Unikalną cechą sensora na bazie tkaniny elektroprzewodzącej jest jego zdolność do generowania sygnału elektrycznego bezpośrednio w odpowiedzi na bodźce zewnętrzne, np. uszkodzenia mechaniczne. Warstwa tkaniny może chronić obiekty i jednocześnie monitorować zmiany rezystancji. Stwierdzono, że rezystancja elektryczna tkaniny wzrasta wraz ze wzrostem uszkodzeń mechanicznych jej powierzchni. Wraz ze wzrostem oporu tkanina traci swoje właściwości ochronne, co może skutkować uszkodzeniem obiektu. Analiza charakterystyk statycznych umożliwiła wybór tkanin charakteryzujących się najszerszym zakresem rezystancji elektrycznej, co skutkuje większą czułością sensora.
Czasopismo
Rocznik
Tom
Strony
93--110
Opis fizyczny
Bibliogr. 43 poz., rys., tab., wykr., wz.
Twórcy
autor
- Lodz University of Technology, Faculty of Material Technologies and Textile Design, Institute of Architecture of Textiles, Lodz, Poland
autor
- Lodz University of Technology, Faculty of Material Technologies and Textile Design, Institute of Architecture of Textiles, Lodz, Poland
Bibliografia
- [1] Choudhry N.A., Arnold L., Rasheed A., Khan I.A., Wang L.: Textronics - A review of textile-based wearable electronics, Advanced Engineering Materials, 23(12), 2023, str. 1-19.
- [2] Simegnaw A.A., Malengier B., Rotich G., Tadesse M.G., Van Langenhove L.: Review on the integration of microelectronics for E-Textile, Materials, 14(17), 2021, str. 1-27.
- [3] Biermaier C., Bechtold T., Pham T.: Towards the functional ageing of electrically conductive and sensing textiles: A review, Sensors, 21(17), 2021, str. 1-32.
- [4] Chatterjee K., Tabor J., Ghosh T.K.: Electrically conductive coatings for fiber-based e-textiles, Fibers, 7(6), 2019, str. 1-46.
- [5] Gaubert V., Boddaert X., Djenizian T., Delattre R.: Textile electronic circuits from laser-patterned conductive fabric, Advanced Engineering Materials 25(9), 2023, str. 1-9.
- [6] Du K., Lin R., Yin L., Ho J.S., Wang J., Lim C.T: Electronic textiles for energy, sensing, and communication, iScience, 25(5), 2022, str. 1-24.
- [7] Horrocks A.R., Anand S.C. (red.) Handbook of technical textiles, 2nd edition, Vol. 2: Technical textile applications, Elsevier 2016.
- [8] Leśnikowski J.: Research into the textile-based signal lines made using ultrasonic welding technology, Autex Research Journal, 22(1), 2022, str. 11-17.
- [9] Krzemińska S., Greszta A., Bartkowiak G., Dąbrowska A., Kotas R., Pękosławski B., Małachowski B., Miśkiewicz P.: Evaluation of heating inserts in active protective clothing for mountain rescuers - preliminary tests, Applied Sciences, 13(8), 2023, str. 1-19.
- [10] Kubiak P., Leśnikowski J., Gniotek K.: Textile sweat sensor for underwear convenience measurement, Fibres and Textiles in Eastern Europe, 24(6), 2016, str. 151-155.
- [10] Lam E., Alizadeh-Meghrazi M., Schlums A., Eskandarian L., Mahnam A., Moineau B., Popovic M.R.: Exploring textile-based electrode materials for electromyography smart garments, Journal of Rehabilitation and Assistive Technologies, 9, 2022, str. 1-18.
- [11] Leśnikowski J.: Research on poppers used as electrical connectors in high speed textile transmission lines, Autex Research Journal, 16(4), 2016, str. 228-235.
- [12] Husain M.D., Kennon R., Dias T.: Design and fabrication of Temperature Sensing Fabric, Journal of Industrial Textiles, 44(3), 2014, str. 398-417.
- [13] Shabani A., Hylli M., Kazani I.: Investigating properties of electrically conductive textiles: A review, Tekstilec, 65(3), 2022, str. 194-217.
- [14] Pizarro F., Villavicencio P., Yunge D., Rodríguez M., Hermosilla G., Leiva A.: Easy-to-build textile pressure sensor, Sensors, 18(4), 2018, str. 1-13.
- [15] Cho S., Chang T., Yu T., Lee C.H.: Smart electronic textiles for wearable sensing and display, Biosensors, 12(4), 2022, str. 1-30.
- [16] Zhou Z., Chen N., Zhong H., Zhang W., Zhang Y., Yin X., He B.: Textile-based mechanical sensors: A review, Materials, 14(20), 2021, str. 1-22.
- [17] Capineri L.: Resistive sensors with smart textiles for wearable technology: from fabrication processes to integration with electronics, Procedia Engineering, 87, 2014, str. 724-727.
- [18] Alsaadi A., Meredith J., Swait T., Curiel-Sosa J.L., Hayes S.: Damage detection and location in woven fabric CFRP laminate panels, Composite Structures, 220, 2019, str. 168-178.
- [19] Hou L., Hayes S.A.: A resistance-based damage location sensor for carbon-fibre composites, Smart Materials and Structures, 11(6), 2002, str. 966-969.
- [20] Ojstršek A., Plohl O., Gorgieva S., Kurecic M., Jancic U., Hribernik S., Fakin D.: Metallisation of textiles and protection of conductive layers: An overview of application techniques, Sensors, 21(10), 2021, str. 1-28.
- [21] Castano L.M., Flatau A.B.: Smart fabric sensors and e-textile technologies: a review, Smart Materials and Structures, 23(5), 2014, str. 1-27.
- [22] Zeng W., Shu L., Li Q., Chen S., Wang F., Tao X.-M.: Fiber-based wearable electronics: A review of materials, fabrication, devices, and applications, Advanced Materials, 26(31), 2014, str. 5310-5336.
- [23] Guo R.H., Jiang S.X., Yuen C.W.M., Ng M.C.F., Lan J.W.: Metallized textile design through electroless plating and tie-dyeing technique, Journal of The Textile Institute, 104(10), 2013, str. 1049-1055.
- [24] Bierwagen O., Ive T., Van de Walle Ch. G., Speck J.S.: Causes of incorrect carrier-type identification in van der Pauw-Hall measurements, Applied Physics Letters, 93, 2008, str. 1-4.
- [25] Pawłowski S., Plewako J., Korzeniewska E.: Influence of structural defects on the resistivity and current flow field in conductive thin layers, Electronics, 9(12), 2020, str. 1-12.
- [26] Smits F.M., Measurement of sheet resistivity with the four-point probe, The Bell System Technical Journal, 37(3), 1958, str. 711-718.
- [27] uz Zaman S., Tao X., Cochrane C., Koncar V.: Understanding the washing damage to textile ECG dry skin electrodes, embroidered and fabric-based; set up of equivalent laboratory tests, Sensors, 20(5), 2020, str. 1-16.
- [28] Chen H.H.: Damage detection of carbon fiber reinforced polymer using electrical measurement and analysis of acoustic emission signals, Doctoral dissertation, University of Akron 2013.
- [29] Liepa V., Santosa F., Vogelius M.: Crack determination from boundary measurements reconstruction using experimental data, Journal of Nondestructive Evaluation, 12(3), 1993, str. 163-174.
- [30] Schueler R., Joshi S.P., Schulte K.: Damage detection in CFRP by electrical conductivity mapping, Composites Science and Technology, 61(6), 2021,
- str. 921-930.
- [31] Tokarska M., Miśkiewicz P., Pawlak W.: Research on the planar electrical anisotropy of conductive woven fabrics, Advanced Engineering Materials, 25(13), 2023, str. 1-10.
- [32] Kazani I., De Mey G., Hertleer C., Banaszczyk J., Schwarz A., Guxho G., Van Langenhove L.: Van der Pauw method for measuring resistivities of anisotropic layers printed on textile substrates, Textile Research Journal, 81(20), 2011, str. 2117-2124.
- [33] Tyurin I.N., Getmantseva V.V., Andreeva E.G.: Van der Pauw method for measuring the electrical conductivity of smart textiles, Fibre Chemistry, 51(2), 2019, 139-146.
- [34] Tokarska M., Gniotek K.: Anisotropy of the electrical properties of flat textiles,
- The Journal of The Textile Institute, 106(1), 2015, str. 9-18.
- [35] Kazakov F., Sattarova N., Aripova O.: Metallized fabrics for environmentally safe applications in textile industry and filter production, IOP Conf. Series: Earth and Environmental Science, 1112, 2022, str. 1-7.
- [36] Ojstršek A., Jug L., Plohl O.: A review of electro conductive textiles utilizing the dip-coating technique: their functionality, durability and sustainability, Polymers, 14(21), 2022, str. 1-26.
- [37] Lu X., Shang W., Chen G., Wang H., Tan P., Deng X., Song H., Xu Z., Huang J., Zhou X.: Environmentally stable, highly conductive, and mechanically robust metallized textiles, ACS Applied Electronic Materials, 3(3), 2021, str. 1477-1488.
- [38] Tomilina O.A., Berzhansky V.N., Tomilin S.V.: The influence of the percolation transition on the electric conductive and optical properties of ultrathin metallic films, Physics of the Solid State, 62, 2020, str. 700-707.
- [39] Van der Pauw L.J.: A method of measuring specific resistivity and Hall effect of discs of arbitrary shape, Philips Research Reports, 13(1), 1958, str. 1-9.
- [40] Kazani I., De Mey G., Hertleer C., Banaszczyk J., Schwarz A., Guxho G., Van Langenhove L.: About the collinear four-probe techniques inability to measure the resistivity of anisotropic electroconductive fabrics, Textile Research Journal, 83(15), 2013, str. 1587-1593.
- [41] ISO/IEC Guide 98-3:2008(En). Uncertainty of Measurement-Part 3: Guide to the Expression of Uncertainty in Measurement.
- [42] Corder G.W., Foreman D.I.: Nonparametric statistics for non-statisticians: A step-by-step approach, Wiley, Hoboken 2009.
Uwagi
Uwaga nr 1: Błędna numeracja bibliografii od poz. 10.
Uwaga nr 2: Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3346fffa-9415-47dc-a512-578befe18b85