PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Abducible Semantics and Argumentation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We extend further the relationship that exists between logic programming semantics and some of the semantics of extensions defined on argumentation frameworks. We define a new logic programming semantics based on the addition of abducible atoms to those normal logic programs that do not have stable models, and consider the argumentation extensions that result from it when using a well-known translation mapping between argumentation frameworks and normal programs. We call this programming semantics the stable m-ab-m logic programming semantics. This semantics defines a new type of semantics of extensions on argumentation frameworks that is not comparable to the semi-stable argumentation semantics, yet both argumentation semantics share several properties, since they both generalize the stable semantics of extensions. We also define a semantics for normal logic programs based on minimal classical two-valued models and the Gelfond-Lifschitz reduct. This semantics corresponds to the semi-stable extensions in argumentation frameworks according to the mapping mentioned before; this way we obtain a general version of a semi-stable semantics for normal logic programs. Each of these new semantics has the property of being non-empty for any normal logic program or argumentation framework, and each of them agrees with the respective stable semantics in the case where the stable semantics is a non-empty set.
Wydawca
Rocznik
Strony
293--319
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
  • Universidad de las Américas-Puebla. México
  • Benemérita Universidad Atónoma de Puebla, Facultad de Ciencias de la Computación. México
autor
  • Benemérita Universidad Atónoma de Puebla, Facultad de Ciencias de la Computación. México
Bibliografia
  • [1] Gelfond M, Lifschitz V. The Stable Model Semantics for Logic Programming. In: Kowalski R, Bowen K, editors. 5th Conference on Logic Programming. MIT Press; 1988. p. 1070–1080.
  • [2] Brewka G. An Abductive Framework for Generalized Logic Programs. In: LPNMR; 1993. p. 349–364. URL http://dblp.uni-trier.de/rec/bib/conf/lpnmr/Brewka93.
  • [3] Dix J. A Classification Theory of Semantics of Normal Logic Programs: II. Weak Properties. Fundam Inform. 1995;22(3):257–288. doi:10.3233/FI-1995-2234.
  • [4] Pereira LM, Pinto AM. Layer Supported Models of Logic Programs. In: LPNMR 2009. vol. 5753 of Lecture Notes in Computer Science. Springer; 2009. p. 450–456. doi:10.1007/978-3-642-04238-6_41.
  • [5] Schlipf JS. Formalizing a Logic for Logic Programming. Ann Math Artif Intell. 1992;5(2-4):279–302.
  • [6] Dung PM. On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games. Artificial Intelligence. 1995;77(2):321–358. URL https://doi.org/10.1016/0004-3702(94)00041-X.
  • [7] Baroni P, Giacomin M. On principle-based evaluation of extension-based argumentation semantics. Artificial Intelligence. 2007;171(10-15):675–700. URL https://doi.org/10.1016/j.artint.2007.04.004.
  • [8] Caminada M, Carnielli WA, Dunne PE. Semi-stable semantics. J Log Comput. 2012;22(5):1207–1254. URL http://dx.doi.org/10.1093/logcom/exr033. doi:10.1093/logcom/exr033.
  • [9] Leite J, Son TC, Torroni P, Woltran S. Applications of logical approaches to argumentation. Argument & Computation. 2015;6(1):1–2. URL http://dx.doi.org/10.1080/19462166.2014.1003407. doi:10.1080/19462166.2014.1003407.
  • [10] Egly U, Gaggl SA, Woltran S. Answer-set programming encodings for argumentation frameworks. Argument & Computation. 2010;1(2):147–177. doi:10.1080/19462166.2010.486479.
  • [11] Caminada M, Sà S, Alcântara J, Dvořàk W. On the equivalence between logic programming semantics and argumentation semantics. International Journal of Approximate Reasoning. 2015;58:87–111. URL https://doi.org/10.1016/j.ijar.2014.12.004.
  • [12] Strass H. The Relative Expressiveness of Abstract Argumentation and Logic Programming. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-30, 2015, Austin, Texas, USA.; 2015. p. 1625–1631. URL http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9352.
  • [13] Pinto AM, Pereira LM. Each normal logic program has a 2-valued Minimal Hypotheses semantics. CoRR. 2011; abs/1108.5766.
  • [14] Pinto AMdSM. Every normal logic program has a 2-valued semantics: theory, extensions, applications, implementations, 2011. URL http://hdl.handle.net/10362/6097.
  • [15] Strass H. Approximating operators and semantics for abstract dialectical frameworks. Artificial Intelligence. 2013;205:39–70. URL https://doi.org/10.1016/j.artint.2013.09.004.
  • [16] Nieves JC, Osorio M, Zepeda C. A Schema for Generating Relevant Logic Programming Semantics and its Applications in Argumentation Theory. Fundamenta Informaticae. 2011;106(2-4):295–319. doi:10.3233/FI-2011-388.
  • [17] van Dalen D. Logic and structure. 3rd ed. Berlin: Springer-Verlag; 1994. doi:10.1007/978-3-662-02962-6.
  • [18] Osorio M, Navarro JA, Arrazola JR, Borja V. Logics with Common Weak Completions. Journal of Logic and Computation. 2006;16(6):867–890. doi:10.1093/logcom/exl013.
  • [19] Eiter T, Leone N, Sacca D. On the partial semantics for disjunctive deductive databases. Annals of Mathematics and Artificial Intelligence. 1997;19(1-2):59–96. doi:10.1023/A:1018947420290.
  • [20] Baral C. Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge: Cambridge University Press; 2003. ISBN:9780521818025.
  • [21] Osorio M, Nieves JC. Range-based argumentation semantics as two-valued models. TPLP. 2017;17(1):75–90. URL http://dx.doi.org/10.1017/S1471068416000090. doi:10.1017/ S1471068416000090.
  • [22] Caminada M. Semi-Stable Semantics. In: Dunne PE, Bench-Capon TJM, editors. COMMA. vol. 144 of Frontiers in Artificial Intelligence and Applications. IOS Press; 2006. p. 121–130.
  • [23] Nieves JC, Osorio M. Inferring preferred extensions by Pstable semantics. In: Latin-American Workshop on Non-Monotonic Reasoning, Proceedings of the LA-NMR07 Workshop, Benemérita Universidad Autónoma de Puebla, Puebla, Pue., México, 17th - 19th September 2007; 2007. URL http: //ceur-ws.org/Vol-286/LANMR07_10.pdf.
  • [24] Carballido JL, Nieves JC, Osorio M. Inferring Preferred Extensions by Pstable Semantics. Revista Iberomericana de Inteligencia Artificial. 2009;13(41):38–53.
  • [25] Nieves JC, Cortés U, Osorio M. Preferred extensions as stable models. TPLP. 2008;8(4):527–543. URL http://dx.doi.org/10.1017/S1471068408003359. doi:10.1017/S1471068408003359.
  • [26] Osorio M, Nieves JC, Santoyo A. Complete Extensions as Clark’s Completion Semantics. In: Computer Science (ENC), 2013 Mexican International Conference on; 2013. p. 81–88. doi:10.1109/ENC.2013.18.
  • [27] Gelfond M. Epistemic approach to formalization of commonsense reasoning. In: Technical Report TR-91-2. University of Texas El Paso; 1991.
  • [28] Kakas AC. Generalized stable models: a semantics for abduction. In: Proc. ECAI’90; 1990. p. 385–391. URL http://dblp.uni-trier.de/db/conf/ecai/ecai90.html#KakasM90.
  • [29] Osorio M, Carballido JL, Zepeda C. Defining stage argumentation semantics in terms of an abducible semantics. Submmited to ENTCS. 2016;328:59–71. URL www.elsevier.com/locate/entcs.
  • [30] Gelfond M, Lifschitz V. Classical negation in logic programs and disjunctive databases. New Generation Computing. 1991;9(3):365–385. URL http://dx.doi.org/10.1007/BF03037169. doi:10.1007/BF03037169.
  • [31] Osorio, M., Nieves, J.C. PStable Semantics for Possibilistic Logic Programs. In: Gelbukh, A., Kuri Morales, Á .F. (eds.) MICAI 2007. LNCS (LNAI), vol. 4827, p. 294–304. Springer, Heidelberg (2007). doi:10.1007/ 978-3-540-76631-5_28.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3344e865-e538-44f1-9fef-b9475c19a9b0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.