PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Future of National Reference Frames – from static to kinematic?

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Technical development, new applications and requests for increased accuracy in georeferencing are setting new demands for accuracy and reliability of reference frames. Due to crustal deformations and local movements of benchmarks, a static reference network deteriorates with time, thus eventually requiring update of the whole system. Technically, renewal of a reference frame is straightforward and should be done whenever enough new data or updated information exist to get an improvement in accuracy. An example is the International Terrestrial Reference Frame, ITRF, which is renewed regularly. The situation is more complicated with national reference frames which may have been given a legal status, and parameters defined by the national legislation. Even without that, renewal and implementation of such a frame is a multi-million euro project taking years to complete. Crustal deformations and movements deteriorate static reference frames (defined by fixed/static coordinates of benchmarks) with time. Eventually, distortions in a static reference frame will become bigger than the uncertainties of GNSS measurements, thus deteriorating the obtainable accuracy of the measurement technique. Instead of a static reference frame, one can use semi-kinematic or kinematic approach where either the transformation from global to the national reference frame or the coordinates of reference frame benchmarks are time-dependent. In this paper we give a short overview of the topic, and discuss on technical issues and future aspects of the reference frames in the viewpoint of National Mapping and Cadastre Authorities (NMA) with an example on the national strategy in Finland.
Rocznik
Strony
117--129
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
autor
  • Finnish Geospatial Research Institute FGI Geodeetinrinne 2, 02430 Masala, Finland
autor
  • Finnish Geospatial Research Institute FGI Geodeetinrinne 2, 02430 Masala, Finland
Bibliografia
  • [1] Altamimi, Z., Métivier, L. and Collilieux, X. (2012). ITRF2008 plate motion model. Journal of Geophysical Research: Solid Earth, 117 (B7). DOI: 10.1029/2011JB008930.
  • [2] Altamimi, Z., Rebischung, P., Métivier, L. and Collilieux, X. (2016). ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. J. Geophys. Res. Solid Earth, 121. DOI: 10.1002/2016JB013098.
  • [3] Altamimi, Z., Métivier, L., Rebischung, P., Rouby, H. and Collilieux, X. (2017). ITRF2014 plate motion model. Geophysical Journal International, 209 (3), 1906–1912. 10.1093/gji/ggx136.
  • [4] Blick, G. and Donnelly, N. (2016). From static to dynamic datums: 150 years of geodetic datums in New Zealand. New Zealand Journal of Geology and Geophysics, 59 (1), pp. 15–21. DOI: 10.1080/00288306.2015.1128451.
  • [5] Boucher C. and Altamimi Z. (2011). Memo: specifications for reference frame fixing in the analysis of a EUREF GPS campaign. Version 8: 18-05-2011.
  • [6] EPN2010. EPN cumulative solution GPS weeks 860–1540, ftp://epncb.oma.be/pub/station/coord/EPN/archive/EPN_A_ETRF2000_C1540.SSC, cited 2017-11-24.
  • [7] EPN2017. EUREF Permanent GNSS Network. http://www.epncb.oma.be, cited 2017-11-20.
  • [8] Evers, K. and Knudsen T. (2017) Transformation pipelines for PROJ.4. FIG Working Week 2017 Surveying the world of tomorrow – From digitalisation to augmented reality, Helsinki, Finland, May 29–June 2, 2017, https://www.fig.net/resources/proceedings/fig_proceedings/fig2017/papers/iss6b/ISS6B_evers_knudsen_9156.pdf.
  • [9] FinnRef 2017. FinnRef stations, http://maanmittauslaitos.fi/en/research/research/other-research-and-measuring-stations/finnref-gnss-stations, cited 2017-11-27.
  • [10] Haasdyk, J., Donnelly, N., Harrison, C., Rizos, C., Roberts, C. and Stanaway, R. (2014). Options for modernising the Geocentric Datum of Australia. Research@ Locate, 14.
  • [11] Häkli P., Lidberg, M., Jivall, L., Nørbech, T., Tangen, O.,Weber, M., Pihlak, P., Aleksejenko, I. and Paršeliunas, E. (2016). The NKG2008 GPS campaign – final transformation results and a new common Nordic reference frame. J. Geod. Sci. 6: 1–33. DOI: 10.1515/jogs-2016-0001.
  • [12] Ihde J., Habrich, H., Sacher, M., Söhne, W., Altamimi, Z., Brockmann, E., Bruyninx, C., Caporali, A., Dousa, J., Fernandes, R., Hornik, H., Kenyeres, A., Lidberg, M., Mäkinen, J., Poutanen, M., Stangl, G., Torres, J.A. and Völksen, C. (2014). EUREF’s Contribution to National, European and Global Geodetic Infrastructures. Proceedings of the IAG General Assembly, Melbourne, Australia, June 28 – July 2, 2011, Series: International Association of Geodesy Symposia, Vol. 139, Rizos, Chris, Willis, Pascal (Eds.), pp. 189–196, DOI: 10.1007/978-3-642-37222-3_24.
  • [13] INSPIRE. (2017). INSPIRE knowledge base. https://inspire.ec.europa.eu/, cited 2017-11-20.
  • [14] Johansson, J.M., Davis, J.L., Scherneck, H-G., Milne, G.A., Vermeer, M., Mitrovica, J.X., Bennett, R.A., Jonsson, B. Elgered, G., Elósegui, P., Koivula, H., Poutanen, M., Rönnäng, B.O. and Shapiro, I.I. (2002). Continuous GPS measurements of postglacial adjustment in Fennoscandia 1. Geodetic results, J. Geophys. Res., 107, DOI: 10.1029/2001JB000400.
  • [15] Kierulf, H.P., Steffen, H., Simpson, M.J.R., Lidberg, M.,Wu, P. andWang, H. (2014). A GPS velocity field for Fennoscandia and a consistent comparison to glacial isostatic adjustment models. J. Geophys. Res. Solid Earth, 119, 6613–6629, DOI: 10.1002/2013JB010889.
  • [16] Kierulf H.P., Evers, K., Häkli, P., Knudsen, P., Lidberg, M., Poutanen, M., Valsson, G., Vestøl, O. and Opseth, P.E. (2017). Dynamic Reference Frames in Iceland. Report on the Symposium of the IAG Subcommission for Europe (EUREF) held in Wroclaw, Poland, 17-19 May 2017.
  • [17] Koivula, H., Kuokkanen, J., Marila, S., Tenhunen, T., Häkli, P., Kallio, U., Nyberg, S. and Poutanen, M. (2012). Finnish Permanent GNSS Network. Proceedings of the 2nd International Conference and Exhibition on Ubiquitous Positioning, Indoor Navigation and Location-Based Service (UPINLBS 2012), 3–4 October 2012, Helsinki, Finland. IEEE Catalog Number: CFP1252K-ART. ISBN: 978-1-4673-1909-6.
  • [18] Lidberg, M., Johansson, J.M., Scherneck, H.-G. and Davis, J.L. (2007). An improved and extended GPSderived 3D velocity field of the glacial isostatic adjustment (GIA) in Fennoscandia. J. Geod., 81: 213–230, DOI: 10.1007/s00190-006-0102-4.
  • [19] Lidberg, M., Johansson, J.M., Scherneck, H.G. and Milne, G.A. (2010). Recent results based on continuous GPS observations of the GIA process in Fennoscandia from BIFROST. Journal of Geodynamics, 50 (1), 8–18.
  • [20] Plag, H.P. and Pearlman, M. eds., 2009. Global geodetic observing system: Meeting the requirements of a global society on a changing planet in 2020. Springer Science and Business Media.
  • [21] Poutanen, M., Holopainen, M., Häkli, P., Junttila, K., Kallio, U., Koivula, H., Nyberg, S., Ollikainen, M., Puupponen, J., Ruotsalainen R. and Tätilä, P. (2012). Julkisen hallinnon suositus 184 Kiintopistemittaus EUREF-FIN-koordinaattijärjestelmässä. (In Finnish).
  • [22] Stanaway, R., Roberts, C., Rizos, C., Donnelly, N., Crook, C. and Haasdyk, J. (2015). Defining a local reference frame using a plate motion model and deformation model. In REFAG 2014 (pp. 147–154). Springer, Cham.
  • [23] Vestøl, O., Ågren, J., Steffen, H., Kierulf, H., Lidberg, M., Oja, T., Rüdja, A., Kall, T., Saaranen, V., Engsager, K. and Jepsen, C. (2016). NKG2016LU, an improved postglacial land uplift model over the Nordic-Baltic region. NKG Working Group of Geoid and Height Systems.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3341cfe4-c855-4409-ba72-b0e9e51246c8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.