PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Predictive neural network in multipurpose self-tuning controller

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A very important problem in designing of controlling systems is to choose the right type of architecture of controller. And it is always a compromise between accuracy, difficulty in setting up, technical complexity and cost, expandability, flexibility and so on. In this paper, multipurpose adaptive controller with implementation of artificial neural network is offered as an answer to a wide range of tasks related to regulation. The effectiveness of the approach is demonstrated by the example of an adaptive thermostat. It also compares its capabilities with those of classic PID controller. The core of this approach is the use of an artificial neural network capable of predicting the behaviour of controlled object within its known range of parameters. Since such a network, being trained, is a model of a regulated system with arbitrary precision, it can be analysed to make optimal management decisions at the moment or in a number of steps. Network learning algorithm is backpropagation and its modified version is used to analyse an already trained network in order to find the optimal solution for the regulator. Software implementation, such as graphical user interface, routines related to neural network and many other, is done using Java programming language and Processing open-source integrated development environment.
Rocznik
Strony
114--120
Opis fizyczny
Bibliogr. 16 poz., rys., wykr.
Twórcy
  • Electronic Microwave Devices Department, Institute of Radio Astronomy of the National Academy of Sciences of Ukraine, 4 Mystetstv St., Kharkiv, 61002, Ukraine
Bibliografia
  • 1. Ayomoh M. K. O., Ajala M. T. (2012), Neural Network Modeling of a Tuned PID Controller, European Journal of Scientific Research, 71, 283–297.
  • 2. Burennikov Y., Kozlov L., Pyliavets V., Piontkevich O. (2017), Mechatronic Hydraulic Drive with Regulator, Based on Artificial Neuron Network, IOP Conference Series: Materials Science and Engineering, 209(1):012071.
  • 3. Du X., Wang J., Jegatheesan V., Shi G. (2018), Dissolved Oxygen Control in Activated Sludge Process Using a Neural Network-Based Adaptive PID Algorithm, Applied Sciences, 8(2):261, DOI: 10.3390/app8020261.
  • 4. Elsisi M. (2019), Design of neural network predictive controller based on imperialist competitive algorithm for automatic voltage regulator, Neural Computing and Applications, 31, 5017–5027.
  • 5. Han G., Fu W., Wang W., Wu Z. (2017), The Lateral Tracking Control for the Intelligent Veicle Based on Adaptive PID Neural Network, Sensors, 17(6):1244, DOI: 10.3390/s17061244.
  • 6. Heaton J. (2008), Introduction to Neural Networks with Java, Heaton Research Inc., St. Louis.
  • 7. Hernández-Alvarado R., García-Valdovinos L.G., Salgado-Jiménez T., Gómez-Espinosa A., Fonseca-Navarro F. (2016), Neural Network-Based Self-Tuning PID Control for Underwater Vehicles, Sensors, 16(9), 1429, https://doi.org/10.3390/s16091429.
  • 8. https://stackoverflow.com/questions/10732027/fast-sigmoid-algorithm (08.02.2018)
  • 9. Liu B., Hussami N., Shrikumar A., Shimko T., Bhate S., Longwell S., Montgomery S., Kundaje A. (2019), A multi-modal neural network for learning cis and trans regulation of stress response in yeast, arXiv:1908.09426.
  • 10. Ma H., Lang S., Wellßow W. (2018) Fallback Solution for a Low-Voltage Regulator Control using Artificial Neural Networks, CIRED 2018 Ljubljana WS, http://dx.doi.org/10.34890/413.
  • 11. MacLean D. (2019), A convolutional neural network for predicting transcriptional regulators of genes in Arabidopsis transcriptome data reveals classification based on positive regulatory interactions, bioRxiv 618926.
  • 12. Pirabakaran K., Becerra V.M. (2002), PID autotuning using neural networks and model reference adaptive control, IFAC Proceedings, 35, 451–456.
  • 13. Wica M., Witkowsk M., Szumiec A., Ziebura T. (2019), Weather forecasting system with the use of neural network and backpropagation algorithm, Proceedings of the International Conference on Data Engineering and Communication Technology, 2468, 37–41, DOI: 10.1007/978-981-10-1675-2_62.
  • 14. Zaman M.H.M., Marzuki M.M., Hannan M.A., Hussain A. (2018), Neural Network Based Prediction of Stable Equivalent Series Resistance in Voltage Regulator Characterization, Bulletin of Electrical Engineering and Informatics, 7, 134–142, DOI: 10.11591/eei.v7i1.857.
  • 15. Zhang Z., Ma C., Zhu R. (2016), Self-Tuning Fully-Connected PID Neural Network System for Distributed Temperature Sensing and Control of Instrument with Multi-Modules, Sensors, 16(10):1709, DOI: 10.3390/s16101709.
  • 16. Zhao D., Yang T., Ou H., Zhou H. (2018), Autopilot Design for Unmanned Surface Vehicle based on CNN and ACO, International Journal of Computers Communications & Control, 13(3), 429–439, DOI: 10.15837/ijccc.2018.3.3236.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-333d8828-2e67-4424-bb03-cb418f537eb4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.