PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of the Small Field of View and Imaging Parameters to Image Quality and Dose Calculation in Adaptive Radiotherapy

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The use of cone beam computed tomography (CBCT) for dose calculation in adaptive radiotherapy has been investigated in many studies. Proper acquisition and reconstruction of preset parameters could improve the accuracy of dose calculation based on CBCT images. This study evaluated the impact of the modified image acquisition and preset reconstruction parameter available in X-Ray Volumetric Imaging (XVI) to improve CBCT image quality and dose calculation accuracy. Calibration curves were generated by scanning the CIRS phantom using CBCT XVI Elekta 5.0.4 and Computed Tomography (CT) Simulator Somatom, which served as CT image reference. Rando and Catphan 503 phantoms were scanned with various acquisition and reconstruction parameters for dose accuracy and image quality tests. The image quality test is uniformity, low contrast visibility, spatial resolution, and geometrical scale test for each image by following the XVI image quality test module. Acquisition and reconstruction parameters have an impact on the Hounsfield Unit (HU) value that is used as the HU-Relative Electron Density (RED) calibration curve. The dose difference for all the calibration curves was within 1% and passed the gamma passing rate. Images acquired using 120 kVp, F1 (with Bowtie Filter), and 50 mA (F1-120-50-10) scored the highest Gamma Index (GI) of 98.5%. For the image quality test, it scored 1.20% on the uniformity test, 2.14% on the low contrast visibility test, and 11 lp/cm on the spatial resolution test. However, F1-120-50-10 reconstructed with different reconstructions scored 3.83% and 4 lp/cm in contrast and spatial resolution test, respectively. CBCT reconstruction parameters work as a scatter correction. It could improve the dose accuracy and image quality. Nevertheless, without adequate CBCT acquisition protocols, it would produce an image with high uncertainty and cannot be fixed with reconstruction protocols. The F1-120-50-10 protocols generate the highest dose accuracy and image quality.
Rocznik
Strony
130--142
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, West Java, 16424, Indonesia
  • Department of Radiation Oncology, Faculty of Medicine, Universitas Indonesia, dr. Cipto Mangunkusumo General Hospital, Jakarta,10430, Indonesia
  • PT Elekta Medical Solution, Cowell Tower 7th Floor Unit 2A, Jakarta, 10410, Indonesia
  • Department of Radiation Oncology, Faculty of Medicine, Universitas Indonesia, dr. Cipto Mangunkusumo General Hospital, Jakarta,10430, Indonesia
  • Department of Radiation Oncology, Faculty of Medicine, Universitas Indonesia, dr. Cipto Mangunkusumo General Hospital, Jakarta,10430, Indonesia
  • Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, West Java, 16424, Indonesia
Bibliografia
  • 1. Castadot P, Lee JA, Geets X, Grégoire V. Adaptive Radiotherapy of Head and Neck Cancer. Semin Radiat Oncol. 2010;20(2):84-93. https://doi.org/10.1016/j.semradonc.2009.11.002
  • 2. de Smet M, Schuring D, Nijsten S, Verhaegen F. Accuracy of dose calculations on kV cone beam CT images of lung cancer patients. Med Phys. 2016;43(11):5934-5940. https://doi.org/10.1118/1.4964455
  • 3. Kataria T, Gupta D, Bisht SS, et al. Adaptive radiotherapy in lung cancer: Dosimetric benefits and clinical outcome. British Journal of Radiology. 2014;87(1038). https://doi.org/10.1259/bjr.20130643
  • 4. Scarfe WC, Farman AG. What is Cone-Beam CT and How Does it Work? Dent Clin North Am. 2008;52(4):707-730. https://doi.org/10.1016/j.cden.2008.05.005
  • 5. Veiga C, McClelland J, Moinuddin S, et al. Toward adaptive radiotherapy for head and neck patients: Feasibility study on using CT-to-CBCT deformable registration for "dose of the day" calculations. Med Phys. 2014;41(3). https://doi.org/10.1118/1.4864240
  • 6. Ding GX, Duggan DM, Coffey CW, et al. A study on adaptive IMRT treatment planning using kV cone-beam CT. Radiotherapy and Oncology. 2007;85(1):116-125. https://doi.org/10.1016/j.radonc.2007.06.015
  • 7. Abe T, Tateoka K, Saito Y, et al. Method for Converting Cone-Beam CT Values into Hounsfield Units for Radiation Treatment Planning. Int J Med Phys Clin Eng Radiat Oncol. 2017;6(4):361-375. https://doi.org/10.4236/ijmpcero.2017.64032
  • 8. Mail N, Moseley DJ, Siewerdsen JH, Jaffray DA. The influence of bowtie filtration on cone-beam CT image quality. Med Phys. 2009;36(1):22-32. https://doi.org/10.1118/1.3017470
  • 9. Pauwels R, Jacobs R, Singer SR, Mupparapu M. CBCT-based bone quality assessment: Are Hounsfield units applicable? Dentomaxillofacial Radiology. 2015;44(1). https://doi.org/10.1259/dmfr.20140238
  • 10. Schneider U, Pedroni E, Lomax A. The Calibration of CT Hounsfield Units for Radiotherapy Treatment Planning. Phys Med Biol. 1996;41(1):111. http://iopscience.iop.org/0031-9155/41/1/009
  • 11. Kamath S, Song W, Chvetsov A, et al. An Image Quality Comparison Study between XVI and OBI CBCT Systems. J Appl Clin Med. Phys. 2011;12(2):3435; 2011. https://doi.org/10.1120/jacmp.v12i2.3435
  • 12. Song WY, Kamath S, Ozawa S, et al. A dose comparison study between XVI® and OBI® CBCT systems. Med Phys. 2008;35(2):480-486. https://doi.org/10.1118/1.2825619
  • 13. Taniguchi T, Hara T, Shimozato T, et al. Effect of computed tomography value error on dose calculation in adaptive radiotherapy with Elekta X-ray volume imaging cone beam computed tomography. J Appl Clin Med Phys. 2021;22(9):271-279. https://doi.org/10.1002/acm2.13384
  • 14. Jaffray DA, Siewerdsen JH, Wong JW, Martinez AA. Flat-panel cone-beam computed tomography for image-guided radiation therapy. International Journal of Radiation Oncology*Biology*Physics. 2002;53(5):1337-1349. https://doi.org/10.1016/S0360-3016(02)02884-5
  • 15. Hyer DE, Serago CF, Kim S, Li JG, Hintenlang DE. An organ and effective dose study of XVI and OBI cone‐beam CT systems. J Appl Clin Med Phys. 2010;11(2):181-197. https://doi.org/10.1120/jacmp.v11i2.3183
  • 16. Oborska-Kumaszyńska D, Northover D. EP-1723: Optimisation of an Elekta XVI (R.5.0.2) system for clinical protocols – image quality vs dose. Radiotherapy and Oncology. 2017;123. https://doi.org/10.1016/S0167-8140(17)32255-7
  • 17. Schulze R, Heil U, Groß D, et al. Artefacts in CBCT: A review. Dentomaxillofacial Radiology. 2011;40(5):265-273. https://doi.org/10.1259/dmfr/30642039
  • 18. Souleyman S, Maria K, Cheikh T, Karima KK. Impact of acquisition protocols on accuracy of dose calculation based on xvi cone beam computed tomography. J Med Phys. 2021;46(2):94-104. https://doi.org/10.4103/jmp.JMP_128_20
  • 19. Little DP. Image quality improvement for medium and large field of view Elekta XVI scans. Australas Phys Eng Sci Med. 2019;42(4):1153-1164. https://doi.org/10.1007/s13246-019-00817-7
  • 20. Srnivasan K, Mohammadi M, Shepherd J. Applications of linac-mounted kilovoltage Cone-beam Computed Tomography in modern radiation therapy: A review. Pol J Radiol. 2014;79:181-193. https://doi.org/10.12659/PJR.890745
  • 21. Rong Y, Smilowitz J, Tewatia D, Tomé WA, Paliwal B. Dose Calculation on KV Cone Beam CT Images: An Investigation of the Hu-Density Conversion Stability and Dose Accuracy Using the Site-Specific Calibration. Medical Dosimetry. 2010;35(3):195-207. https://doi.org/10.1016/j.meddos.2009.06.001
  • 22. Hansen MS, Kellman P. Image reconstruction: An overview for clinicians. Journal of Magnetic Resonance Imaging. 2015;41(3):573-585. https://doi.org/10.1002/jmri.24687
  • 23. Rached PA, Lio J, Canola C, et al. Computed Tomographic-Dacryocystography (CT-DCG) of the Normal Canine Nasolacrimal Drainage System with Three-Dimensional Reconstruction. Vet Ophthalmol. 2011;14(3):174-9. https://doi.org/10.1111/j.1463-5224.2010.00861.x
  • 24. Ezzell GA, Burmeister JW, Dogan N, et al. IMRT commissioning: Multiple institution planning and dosimetry comparisons, a report from AAPM Task Group 119. Med Phys. 2009;36(11):5359-5373. https://doi.org/10.1118/1.3238104
  • 25. Sarria GR, Schmitt H, Jahnke L, et al. Cone Beam CT-Based Daily Adaptive Planning or Defined-Filling Protocol for Neoadjuvant Gastric Cancer Radiation Therapy: A Comparison. Adv Radiat Oncol. 2021;6(1). https://doi.org/10.1016/j.adro.2020.09.026
  • 26. Mynampati DK, Yaparpalvi R, Hong L, Kuo HC, Mah D. Application of AAPM TG 119 to volumetric arc: Therapy (VMAT). J Appl Clin Med Phys. 2012;13(5):108-116. https://doi.org/10.1120/jacmp.v13i5.3382
  • 27. ICRU Report 62: Prescribing, Recording and Reporting Photon Beam Therapy. Published online November 1, 1999.
  • 28. Cozzi L, Fogliata A, Buffa F, Bieri S. Dosimetric impact of computed tomography calibration on a commercial treatment planning system for external radiation therapy. Radiotherapy and Oncology. 1998;48(3):335-338. https://doi.org/10.1016/S0167-8140(98)00072-3
  • 29. Barateau A, de Crevoisier R, Largent A, et al. Comparison of CBCT-based dose calculation methods in head and neck cancer radiotherapy: from Hounsfield unit to density calibration curve to deep learning. Med Phys. 2020;47(10):4683-4693. https://doi.org/10.1002/mp.14387
  • 30. Dunlop A, McQuaid D, Nill S, et al. Vergleich unterschiedlicher CT-Kalibrierungsmethoden zur Dosisberechnung auf Basis der Kegelstrahlcomputertomographie. Strahlentherapie und Onkologie. 2015;191(12):970-978. https://doi.org/10.1007/s00066-015-0890-7
  • 31. Rafic M, Ravindran P. Evaluation of on-board imager cone beam CT hounsfield units for treatment planning using rigid image registration. J Cancer Res Ther. 2015;11(4):690-696. https://doi.org/10.4103/0973-1482.146087
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-333d750b-f8f9-4ad2-a023-0209d011953f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.