PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Rolling Bearing Fault Diagnosis Method Based on Improved Variational Mode Decomposition and Information Entropy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Due to the complex randomness and nonlinearity of rolling bearing vibration signal, it is challenging to extract fault features effectively. By analyzing the vibration mechanism of rolling bearing, it is found that the vibration signal of local damage defects of rolling bearing has the characteristics of periodic impact and amplitude modulation. The variational mode decomposition (VMD) algorithm has a good advantage in dealing with nonlinear and nonstationary signals and decomposing a signal into different modes. However, VMD has the problem of parameter selection, which directly affects the performance of VMD processing, and causes mode aliasing. Therefore, a rolling bearing fault diagnosis method based on improved VMD is proposed. A new fitness function combining differential evolution (DE) algorithm with gray wolf optimization (GWO) algorithm is proposed to form a new hybrid optimization algorithm, named DEGWO. The simulation results show that the improved VMD method based on DEGWO can adaptively remove the noise according to the characteristics of the signal and restore the original characteristics of the vibration signal. Finally, in order to verify the advantages of the research, the information entropy is extracted from the data of 1000 samples in the bearing database of Case Western Reserve University as the feature set, which is input into support vector machine (SVM) for fault diagnosis test. The results show that the diagnostic accuracy of this method is 96.5%, which effectively improved the accuracy of rolling bearing fault diagnosis.
Rocznik
Strony
23--51
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
autor
  • School of Mechanical and Electrical Engineering, Southwest Petroleum University Chengdu 610500, China
  • National Engineering and Research Center for Mountainous Highways Chongqing 400067, China
autor
  • ) School of Mechanical and Electrical Engineering, Southwest Petroleum University Chengdu 610500, China
  • School of Electrical Engineering and Information, Southwest Petroleum University Chengdu 610500, China
autor
  • School of Manufacturing Industry and Engineering Sciences, Sichuan University Chengdu 610500, China
autor
  • School of Mechanical and Electrical Engineering, Southwest Petroleum University Chengdu 610500, China
autor
  • School of Mechanical and Electrical Engineering, Southwest Petroleum University Chengdu 610500, China
autor
  • School of Mechanical and Electrical Engineering, Southwest Petroleum University Chengdu 610500, China
Bibliografia
  • 1. Meng Z., Li J., Yin N., Pan Z., Remaining useful life prediction of rolling bearing using fractal theory, Measurement, 156: 107572, 2020, doi: 10.1016/j.measurement.2020.107572.
  • 2. Zhao M., Tang B., Tan Q., Bearing remaining useful life estimation based on time– frequency representation and supervised dimensionality reduction, Measurement, 86: 41–55, 2016, doi: 10.1016/j.measurement.2015.11.047.
  • 3. Wen-Hsiang H., Braun S.G., Editorial Statement: Prognostics and system health management for electromechanical systems, Mechanical Systems and Signal Processing, 113: 1–4, 2018, doi: 10.1016/j.ymssp.2018.05.065.
  • 4. Mishra C., Samantaray A.K., Chakraborty G., Rolling element bearing defect diagnosis under variable speed operation through angle synchronous averaging of wavelet denoised estimate, Mechanical Systems and Signal Processing, 72–73: 206–222, 2016, doi: 10.1016/j.ymssp.2015.10.019.
  • 5. Cheng J., Yang Y., Yang Y., A rotating machinery fault diagnosis method based on local mean decomposition, Digital Signal Processing, 22(2): 356–366, 2012, doi: 10.1016/ j.dsp.2011.09.008.
  • 6. Dragomiretskiy K., Zosso D., Variational mode decomposition, IEEE Transactions on Signal Processing, 62(3): 531–544, 2014, doi: 10.1109/TSP.2013.2288675.
  • 7. Li X., Ma Z., Kang D., Li X., Fault diagnosis for rolling bearing based on VMD-FRFT, Measurement, 155: 107554, 2020, doi: 10.1016/j.measurement.2020.107554.
  • 8. He Z., Chen G., Hao T., Teng C., Hou M., Cheng Z., Weak fault detection method of rolling bearing based on testing signal far away from fault source, Journal of Mechanical Science and Technology, 34(3): 1035–1048, 2020, doi: 10.1007/s12206-020-0206-4.
  • 9. Zhang M., Jiang Z., Feng K., Research on variational mode decomposition in rolling bearings fault diagnosis of the multistage centrifugal pump, Mechanical Systems and Signal Processing, 93: 460–493, 2017, doi: 10.1016/j.ymssp.2017.02.013.
  • 10. Aneesh C., Kumar S., Hisham P.M., Soman K.P., Performance comparison of variational mode decomposition over empirical wavelet transform for the classification of power quality disturbances using support vector machine, Procedia Computer Science, 46: 372–380, 2015, doi: 10.1016/j.procs.2015.02.033.
  • 11. Bi F., Li X., Liu C., Tian C., Ma T., Yang X., Knock detection based on the optimized variational mode decomposition, Measurement, 140: 1–13, 2019, doi: 10.1016/ j.measurement.2019.03.042.
  • 12. Li F., Li R., Tian L., Chen L., Liu J., Data-driven time-frequency analysis method based on variational mode decomposition and its application to gear fault diagnosis in variable working conditions, Mechanical Systems and Signal Processing, 116: 462–479, 2019, doi: 10.1016/j.ymssp.2018.06.055.
  • 13. Shaheen M.A.M., Hasanien H.M., Alkuhayli A., A novel hybrid GWO-PSO optimization technique for optimal reactive power dispatch problem solution, Ain Shams Engineering Journal, 12(1): 621–630, 2021, doi: 10.1016/j.asej.2020.07.011.
  • 14. Storn R., Price K., Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces, Journal of Global Optimization, 11(4): 341–359, 1997, doi: 10.1023/A:1008202821328.
  • 15. Nan G., Tang M., Chen E., Yang A., Nonlinear dynamic mechanism of rolling element bearings with an internal clearance in a rotor-bearing system, Advances in Mechanical Engineering, 8(11): 1687814016679588, 2016, doi: 10.1177/1687814016679588.
  • 16. Tang G.J., Wang X.L., Application of parameter optimization variational modal decomposition method in early fault diagnosis of rolling bearing, Journal of Xi’an JiaoTong University, 49(5): 73–81, 2015.
  • 17. Case Western Reserve University. Bearing data center seeded fault test data, https://engineering.case.edu/bearingdatacenter/download-data-file.
  • 18. Wang Z., Yao L., Chen G., Ding J., Modified multiscale weighted permutation entropy and optimized support vector machine method for rolling bearing fault diagnosis with complex signals, ISA Transactions, 114: 470–484, 2021, doi: 10.1016/j.isatra.2020.12.054.
  • 19. Li Y., Gao Q., Miao B., Zhang W., Liu J., Zhu Y., Application of the refined multiscale permutation entropy method to fault detection of rolling bearing, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 43(5): 1–14, 2021, doi: 10.1007/s40430- 021-02986-7.
  • 20. Guo X., Shen Y., Yang S., Application of sample entropy and Fractional Fourier transform in the fault diagnosis of rolling bearings [in Chinese], Journal of Vibration and Shock, 36(18): 65–69, 2017, doi: 10.13465/j.cnki.jvs.2017.18.010.
  • 21. Zhang W., Zhou J., A comprehensive fault diagnosis method for rolling bearings based on refined composite multiscale dispersion entropy and fast ensemble empirical mode decomposition, Entropy, 21(7): 680, 2019, doi: 10.3390/e21070680.
  • 22. Lee Y.E., Kim B.-K., Bae J.-H., Kim K.C., Misalignment detection of a rotating machine shaft using a support vector machine learning algorithm, International Journal of Precision Engineering and Manufacturing, 22(3): 409–416, 2021, doi: 10.1007/s12541-020- 00462-1.
  • 23. Dash Ch.S.K., Sahoo P., Dehuri S., Cho S.-B., An empirical analysis of evolved radial basis function networks and support vector machines with mixture of kernel, International Journal on Artificial Intelligence Tools, 24(4): 1550013, 2015, doi: 10.1142/ s021821301550013x.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3337e683-904e-4c03-9e18-74d20df1459a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.