PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mitigation of scale problem in the pumped Disi water to Amman, Jordan

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Various methods are known to mitigate or prevent scale formation in pipes, rather by chemical addition, e.g., anti-scaling substances, or physically which includes ultrasonic or nanofiltration (NF). Nanofiltration membranes have a selectivity for the multivalent charged ions, so monovalent ions will pass the membrane partly and multivalent ions will be rejected completely. Chemical addition to prevent scale formation is based on justifying water parameters such as pH, alkalinity, and concentrations of ions that form the building units of scale crystal. In order to mitigate the scaling tendency in water pumped from the Disi aquifer to Amman city along its 345 km pipeline, different studies were conducted using simulated plumbing system. This part of the study is concerned with scale mitigation using nanofiltration and addition of chemicals. Nanofiltration was applied to reduce the hardness that causes scale deposition where it rejected around 70.5% of Ca2+, 71.98% Mg2+, 7.72% K+, 29.0% Na+, 66.63% Cl, 86.51% NO3 , 85.72% SO42–, and 69.85% CO2. Increasing the concentration of some ions such as Na+, K+ and Cl keeping the allowable limit gave good results for scale mitigation.
Rocznik
Strony
97--110
Opis fizyczny
Bibliogr. 22 poz., tab., rys.
Twórcy
  • Al-Isra University, Department of Chemistry, Amman, Jordan
  • Tafila Technical University, Department of Chemical Engineering, Tafila, Jordan
  • The University of Jordan, Department of Chemistry, Faculty of Science, Amman 11942, Jordan
Bibliografia
  • [1] HONG S., ELIMELECH M., Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes, J. Membr. Sci., 1997, 132, 159.
  • [2] GOZALVEZ J.M., LORA J., MENDOZA J.A., SANCHO M., Modelling of a low-pressure reverse osmosis system with concentrate recirculation to obtain high recovery levels, Desalination, 2002, 144, 341.
  • [3] SIMPSON A.E., KERR C.A.,BUCKLEY C.A., The effect of pH on the nanofiltration of the carbonate system in solution, Desalination, 1987, 64, 305.
  • [4] FU J.H.J., SCHOCH R.B., Molecular sieving using nanofilters. Past, present and future, Royal Soc. Chem. Lab. Chip., 2008, 8, 23.
  • [5] SHON H., PHUNTSHO S., CHAUDHARY D., VIGNESWARAN S., CHO J., Nanofiltration for water and waste water treatment. A mini review, Drink. Water Eng. Sci., 2013, 6, 47.
  • [6] GORENFLO A.VELÁZQUEZ-PADRÓN D., FRIMMEL F.H.,Nanofiltration of a German groundwater of high hardness and NOM content: performance and costs, Desalination, 2002, 151, 253.
  • [7] AL-RAWAJFEH A., Nanofiltration pretreatment as CO2 deaerator of desalination feed. CO2 release reduction in MSF distillers, Desalination, 2016, 380, 12.
  • [8] CRABTREE M., ESLINGER D., FLETCHER P., MILLER M., JOHNSON A., KING G., Fighting scale. Removal and prevention, Oilfield Rev., 1999, 11, 30.
  • [9] FALINI G., GAZZANO M., RIPAMONTI A., Crystallization of calcium carbonate in presence of magnesium and polyelectrolytes, J. Crystal Growth, 1994, 137, 577.
  • [10] MACADAM J., PARSONS S., Calcium carbonate scale formation and control, Rev. Environ. Sci. Biotech., 2004, 3, 159.
  • [11] MELIDIS P., SANOZIDOU M., OUZOUNIS K., Corrosion control by using indirect methods, Desalination, 2007, 213, 152.
  • [12] Gama Energy Inc., Disi–Mudawwarah to Amman water conveyance system environmental and social assessment report, EIA, Addendum 2, Rev., Turkey, 2008, 19.
  • [13] BEN FARH M., HAMROUNI B., Controlling the corrosiveness of Fernana Plant’s Water (Tunisia) using a new treatment estimation method, Adv. Environ. Biol., 2014, 8, 386.
  • [14] ALSHAMAILEH E., ALRAWAJFEH A., AL-MAABRAH A., Assessment of quality and potential of scale formation and corrosivity of drinking water supplied from Disi to Amman, Jordan, Fres. Environ. Bull., 2017, 26 (1), 634.
  • [15] ALABI A., CHIESA M., GARLISIA C., PALMISANO C., Advances in anti-scale magnetic water treatment, Environ. Sci. Water Res. Techn., 2015, 00, 1.
  • [16] CUBILLAS P., PERSON M., Zeolites and catalysis, synthesis, reactions and applications. Synthesis mechanism. Crystal growth and nucleation, Wiley, Weinheim 2010.
  • [17] https://www.gewater.com/handbook/cooling_water_systems/ch25deposit.jsp
  • [18] MACADAM J., PARSONS S.A., Calcium carbonate scale formation and control, Environ. Sci. Biotech., 2004, 3, 159.
  • [19] EATON D., CLESCERI S., GREENBERG E., Standard methods for the examination of water and wastewater, 19th Ed., American Public Health Association, American Water Works Association and Water Environment Federation, Washington 1999.
  • [20] MILLETTE R., HAMMONDS F., PANSING F., HANSEN C.,CLARK J., Aggressive water. Assessing the extent of the problem, Am. Water Works Assoc., 1980, 72, 262.
  • [21] LANGELIER F., The analytical control of anticorrosion water treatment, J. Am. Water Works Assoc., 1936, 28, 1500.
  • [22] DABROWSKI W., BUCHTA R., DABROWSKI B., MACKIE R.I., Calcium carbonate equilibria in water supply systems, Environ. Prot. Eng., 2010, 36 (2). 75.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-33320675-9990-4a2d-8563-52cbd57fa69a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.