PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Morphology of Impact Fracture Surfaces in Manganese Cast Steel Modified by Rare Earth Elements

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The morphology of G20Mn5 specimens made of non-modified and rare earth metals (REM) modified cast steel was investigated. Molten metal was treated with a cerium-rich mischmetal contain 49.8% Ce, 21.8% La, 17.1% Nd, 5.5% Pr and 5.35% other rare earth metals making up the balance. The melting, quenching (920°C/water) and tempering (720°C/air) were performed under industrial conditions. Analysis included G20Mn5 cast steel fracture specimens subjected to Charpy V-notch impact testing at 20°C, -30°C and -40°C. The purpose of the analysis was to determine the influence of REM on the microstructure and mechanical properties of G20Mn5 cast steel and the REM effect on the morphology, impact strength and character of the fracture surfaces. In addition, a description of the mechanism by which fracture occurred in the two materials was proposed. The author demonstrated the beneficial effects of adding REM to molten steel, manifested by a 20 - 40% increase in impact toughness, depending on test temperature, as compared to the non-modified cast steel. Important findings included more than 100% increase in impact strength in comparison with the required impact toughness of 27J at -40C for heat treated steels (EN 10213).
Rocznik
Strony
89--94
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
  • Kielce University of Technology, Kielce, Poland
Bibliografia
  • [1] Kalandyk, B., Sierant, Z. & Sobula, S. (2009). Improvement of the microstructure, yield stress and impact toughness of medium carbon steel by vanadium additions. Przegląd Odlewnictwa (Foundry Journal of the Polish Foundrymen’s Association). 58(3), 108-113.
  • [2] Xiang, CH. & Yanxiang, L. (2007). Fracture toughness improvement of austempered high silicon steel by titanium, vanadium and rare earth elements modification. Materials Science and Engineering A. 444, 298-305.
  • [3] Longmei Wang, Qin Lin, Jingwen Ji, & Denian Lan, (2007). New study concerning development of application of rare earth metals. Journal of Alloys and Compounds. 408-412, 384-386.
  • [4] Gambino, R.J. & McGuire, T.R. (1986). Enhanced magneto-optic properties of light rare-earth-transition metal amorphous alloys. Journal of Magnetism and Materials. 54-57(3), 1365-1370.
  • [5] Mitsunori Yada, Masami Mihara, Shingi Mouri, Masako Kuroki, & Tsuyoshi Kijima, (2002). Rare Earth (Er, Tm, Yb, Lu) Oxide Nanotubes Templated by Dodecylsulfate Assemblies. Advanced Materials. 14(4), 309-313.
  • [6] Mikusek, D., Rapiejko, C., Walisiak, D. & Pacyniak, T. (2019). Effect of Mischmetal on the Microstructure of the Magnesium Alloy AZ91. Archives of Foundry Engineering. 19(4), 45-50.
  • [7] Naumov, A.V. (2008). Review of the world market of rare earth metals. Russian Journal of Non – Ferrous Metals. 49(1), 22-31.
  • [8] Lundin, R. & Wilson J.R. (2000). Rare earth metals, Advanced Materials and Processes. 158(1), 52-55.
  • [9] Longmei Wang, Qin Lin, Jingwen Ji, & Denian Lan, (2005). New study concerning development of application of rare earth metals. Journal of Alloys and Compounds. 408-412, 384-386.
  • [10] Committee On Assessing The Need For A Defense Stockpile National Materials Advisory Board, Division Of Engineering And Physical Science: Managing Materials for a 21st Century Military, The National Academies Press, Washington, D.C., 2008 (http://www.nap.edu/catalog.php?record_id=12028).
  • [11] Kocańda. S. (1978). Fatigue related deterioration of metals. Chapter V. Warszawa: WNT. (in Polish).
  • [12] Stankiewicz, M., Holloway, G., Marshal, A., Zhang, Z. & Ślązak, B. (2012). Charpy impact test and lateral expansion parameter in welding consumables evaluation for cryogenic application. Przegląd Spawalnictwa. 11, 1 -11.
  • [13] Zapffe, C.A. & Clogg, M. (1945). Fractography – a new tool for metallurgical research. Transactions ASM. 34, 71-108
  • [14] Neimitz, A. (1998). Fracture mechanics. Warszawa: WNT. (in Polish).
  • [15] Pełczyński, T. (1969). Issues of critical stress-strain state and cracking of materials. Warszawa: SIMP. (in Polish).
  • [16] Tyson, W.R., Ayres, R.A. & Stein, D.F. (1973). Anisotropy of cleavage in b.c.c transition metals. Acta Metallurgica. 21(5), 621-627.
  • [17] Kasińska, J. (2016). Modification influence of mischmetal on fractography fracture of G17CrMo5-5 cast steel samples after the three-point bending test. Metalurgija. 55(4), 749-752.
  • [18] Broek, D. (1973). Some contributions of electron fractography to the theory of fracture. National Aerospace Laboratory NLR the Netherlands.
  • [19] Broek, D. (1973). The role of inclusions in ductile fracture and fracture toughness. Engineering Fracture Mechanics. 5, 55-56.
  • [20] Zerbst, U., Klinger, C. & Clegg, R. (2015). Fracture mechanics as a tool in failure analysis — Prospects and limitations. Engineering Failure Analysis. 55, 376-410.
  • [21] Rajanna, K., Pathiraj, B. & Kolster, B.H. (1997). Duplex stainless steel fracture surface analysis using x-ray fractography. Journal of Materials Engineering and Performance. 6(1), 35-40.
  • [22] Mullen, M.J., Griebel, A.H. & Tartaglia, J.M. (2007). Fracture surface analysis. Advanced Materials & Processes. 21-23.
  • [23] Kasińska, J. (2018). Influence of Rare Earth Metals on Microstructure and Mechanical Properties of G20Mn5 Cast Steel. Archives of Foundry Engineering. 18(3), 37-42.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-332f48e6-bae7-4552-8427-0884a0c74118
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.