Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Low and poor-quality water resources in Poland require rational and responsible use of them also in aquaculture. In recent years, there has been an increase in fish consumption, but also a change in consumer preferences. The development of innovative aquaculture methods leads to a reduction in water consumption, even by 20%, as is the case with recirculation aquaculture systems with salmonid fish production. In turn, sewage sludge generated in the purification process should be directed to the third stage of their purification, i.e. a hydrophyte lagoon. High requirements for the discharge of post-production water into aquatic ecosystems call for even more restrictive water management at every stage of fish production. The use of phytoremediation based on knowledge about the adaptation of aquatic and wetland plants to development in artificial aquatic ecosystems is an important element supporting the improvement of surface water quality. Thanks to the processes of rhizofiltration, phytoextraction and phytodegradation, hydrophytes effectively participate in reducing the concentration of nutrients and additionally metal ions. In turn, in fish farms focused on intensive carp production, part of the water drained from ponds in autumn can be subjected to phytoremediation in channels with an ecotone zone, thus improving the quality of these ecosystems. The key here is the selection of plants for the proposed solutions using phytoremediation and guaranteeing the effectiveness of this technology.
Wydawca
Czasopismo
Rocznik
Tom
Strony
228--240
Opis fizyczny
Bibliogr. 73 poz., fot., rys., tab., wykr.
Twórcy
autor
- West Pomeranian University of Technology, Faculty of Environmental Management and Agriculture, Department of Bioengineering, 17 Juliusza Słowackiego St, 71-434, Szczecin, Poland
autor
- West Pomeranian University of Technology, Faculty of Environmental Management and Agriculture, Department of Bioengineering, 17 Juliusza Słowackiego St, 71-434, Szczecin, Poland
autor
- West Pomeranian University of Technology, Department of Hydrobiology, Ichthyology and Biotechnology of Reproduction, 4 Królewicza Kazimierza St, 71-550, Szczecin, Poland
autor
- West Pomeranian University of Technology, Department of Hydrobiology, Ichthyology and Biotechnology of Reproduction, 4 Królewicza Kazimierza St, 71-550, Szczecin, Poland
autor
- West Pomeranian University of Technology, Department of Hydrobiology, Ichthyology and Biotechnology of Reproduction, 4 Królewicza Kazimierza St, 71-550, Szczecin, Poland
Bibliografia
- Adámek, Z., Mössmer, M. and Hauber, M. (2019) “Current principles and issues affecting organic carp (Cyprinus carpio) pond farming,” Aquaculture, 512, 734261. Available at: https://doi.org/10.1016/j.aquaculture.2019.734261.
- Ahmed, N. and Turchini, G.M. (2021) “Recirculating aquaculture systems (RAS): Environmental solution and climate change adaptation,” Journal of Cleaner Production, 297, 126604. Available at: https://doi.org/10.1016/j.jclepro.2021.126604.
- Barszczewski, J. and Kaca, E. (2012) “Water retention in ponds and the improvement of its quality during carp production,” Journal of Water and Land Development, 17, pp. 31–38. Available at: https://doi.org/10.2478/v10025-012-0030-z.
- Bregnballe, J. (2022) A guide to recirculation aquaculture – An introduction to the new environmentally friendly and highly productive closed fish farming systems. Rome: FAO, Eurofish International Organisation. Available at: https://doi.org/10.4060/cc2390en.
- Brysiewicz, A. et al. (2013) “The effect of effluents from rainbow trout ponds on water quality in the Gowienica River,” Journal of Water and Land Development, 19, pp. 23–30. Available at: https://doi.org/10.2478/jwld-2013-0012.
- Cho, S.K., Igliński, B. and Kumar, G. (2024) “Biomass based biochar production approaches and its applications in wastewater treatment, machine learning and microbial sensors,” Bioresource Technology, 391, 129904. Available at: https://doi.org/10.1016/j.biortech.2023.129904.
- Cieśla, M. et al. (2023) Kodeks dobrej praktyki chowu i hodowli ryb w stawach karpiowych [Code of good practice for breeding and cultivating fish in carp ponds]. Available at: https://szybkikarp.pl/files/kodeks-dobrej-praktyki/KDP_2023.pdf (Accessed: May 11, 2024).
- Comeau, Y. et al. (2001) “Phosphorus removal from trout farm effluents by constructed wetlands,” Water Science and Technology, 44(11–12), pp. 55–60. Available at: https://doi.org/10.2166/wst.2001.0809.
- Couto, E et al. (2022) “The potential of algae and aquatic macrophytes in the pharmaceutical and personal care products (PPCPs) environmental removal: A review,” Chemosphere, 302, 134808. Available at: https://doi.org/10.1016/j.chemosphere.2022.134808.
- Dalsgaard, J. et al. (2018) “Nutrient removal in a constructed wetland treating aquaculture effluent at short hydraulic retention time,” Aquaculture Environment Interactions, 10, pp. 329–343. Available at: https://doi.org/10.3354/aei00272.
- Ding, J. et al. (2021) “Microbial abundance and community in constructed wetlands planted with Phragmites australis and Typha orientalis in winter,” International Journal of Phytoremediation, 23(14), pp. 1476–1485. Available at: https://doi.org/10.1080/15226514.2021.1907737.
- EIO (2023) Poland. Eurofish International Organisation. Available at: https://eurofish.dk/member-countries/poland (Accessed: May 11, 2024).
- Farraji, H. et al. (2016) “Advantages and disadvantages of phytoremediation: A concise review,” International Journal of Environmental Science and Technology, 2, pp. 69–75.
- Fasani, E. et al. (2018) “The potential of genetic engineering of plants for the remediation of soils contaminated with heavy metals,” Plant Cell & Environment, 41(5), pp. 1201–1232. Available at: https://doi.org/10.1111/pce.12963.
- Fraga-Santiago, P. et al. (2022) “Pharmaceuticals influence on Phragmites australis phytoremediation potential in Cu contaminated estuarine media,” Pollutants, 2, pp. 42–52. Available at: https://doi.org/10.3390/pollutants2010006.
- Francová, K. et al. (2019) “Effects of fish farming on macrophytes in temperate carp ponds,” Aquaculture International, 27, pp. 413–436. Available at: https://doi.org/10.1007/s10499-018-0331-.
- Gałczyńska, M. (2012) Reakcja przęstki pospolitej (Hippuris vulgaris L.) i żabiścieku pływającego (Hydrocharis morsus-ranae L.) na zanieczyszczenie wody wybranymi metalami ciężkimi i możliwości wykorzystania tych roślin w fitoremediacji wód [The response of the common worm (Hippuris vulgaris L.) and the European frogbit (Hydrocharis morsus-ranae L.) to water pollution with selected heavy metals and the possibilities of using these plants in water phytoremediation]. Szczecin: Wydaw. Uczelniane ZUT.
- Gałczyńska, M. et al. (2019) “Possibilities and limitations of using Lemna minor, Hydrocharis morsus-ranae and Ceratophyllum demersum in removing metals with contaminated water,” Journal of Water and Land Development, 40, pp. 161–173. Available at: https://doi.org/10.2478/jwld-2019-0018.
- Gałczyńska, M., Gamrat, R. and Ciemniak, A. (2023) “An analysis of the reaction of frogbit (Hydrocharis morsus-ranae L.) to cadmium contamination with a view to its use in the phytoremediation of water bodies,” Applied Sciences, 13(2), 1197. Available at: https://doi.org/10.3390/app13021197.
- Gamrat, R. et al. (2016) “Importance of the buffer zone of the water intake for the maintenance of agrosystem phytodiversity,” AGROFOR International Journal, 1(2), pp. 103–111. Available at: https://doi.org/10.7251/AGRENG1602103G.
- Ghaly, A.E., Kamal, M. and Mahmoud, N.S. (2005) “Phytoremediation of aquaculture wastewater for water recycling and production of fish feed,” Environment International, 31(1), pp. 1–13. Available at: https://doi.org/10.1016/j.envint.2004.05.011.
- Gorito, A.M. et al. (2017) “A review on the application of constructed wetlands for the removal of priority substances and contaminants of emerging concern listed in recently launched EU legislation,” Environmental Pollution, 227, pp. 428–443. Available at: https://doi.org/10.1016/j.envpol.2017.04.060.
- Goryczko, K. (2008) Pstrągi. Chów i hodowla. Poradnik hodowcy [Trout. Breeding and husbandry. Breeder’s guide]. Olsztyn: Wydawnictwo Instytutu Rybactwa Śródlądowego.
- GUS (2023) Ochrona środowiska 2023 [Environment 2023]. Warsaw: Statistics Poland. Available at: https://stat.gov.pl/en/topics/environment-energy/environment/environment-2023,1,15.html (Accessed: May 11, 2024).
- Hu, L. et al. (2010) “Nutrient removal in wetlands with different macrophyte structures in eastern Lake Taihu, China,” Ecological Engineering, 36(12), pp. 1725–1732. Available at: https://doi.org/10.1016/j.ecoleng.2010.07.020.
- Hu, T. et al. (2024) “Effect of toxicity of Chromium (VI) stressors alone and combined to high temperature on the histopathological, antioxidation, immunity, and energy metabolism in fish Phoxinus lagowskii,” Fishes, 9(5), 168. Available at: https://doi.org/10.3390/fishes9050168.
- Iyyappan, J. et al. (2023) “Promising strategies of circular bioeconomy using heavy metal phytoremediated plants – A critical review,” Chemosphere, 313, 137097. Available at: https://doi.org/10.1016/j.chemosphere.2022.137097.
- Jóźwiakowski, K. (2012) Badania skuteczności oczyszczania ścieków w wybranych systemach gruntowo-roślinnych [Studies on the efficiency of sewage treatment in choosen constructed wetland systems]. Cracow: Komisja Technicznej Infrastruktury Wsi PAN w Krakowie: Stowarzyszenie Infrastruktura i Ekologia Terenów Wiejskich.
- Khanjani, M.H., Sharifinia, M. and Emerenciano, M.G.C. (2024) “Biofloc technology (BFT) in aquaculture: What goes right, what goes wrong? A scientific-based snapshot,” Aquaculture Nutrition, 2024(1), 7496572. Available at: https://doi.org/10.1155/2024/7496572.
- Kristanti, R.A. and Hadibarata, T. (2023) “Phytoremediation of contaminated water using aquatic plants, its mechanism and enhancement,” Current Opinion in Environmental Science & Health, 32, 100451. Available at: https://doi.org/10.1016/j.coesh.2023.100451.
- Kufel, L. (2012) “Are fishponds really a trap for nutrients? – A critical comment on some papers presenting such a view,” Journal of Water and Land Development, 17 pp. 39–44.
- Lacoul, P. and Freedman, B. (2006) “Environmental influences on aquatic plants in freshwater ecosystems,” Environmental Reviews, 14(2), pp. 89–136. Available at: https://doi.org/10.1139/A06-001.
- Lee, B.-H. and Scholz, M. (2007) “What is the role of Phragmites australis in experimental constructed wetland filters treating urban runoff?,” Ecological Engineering, 29 (1), pp. 87–95. Available at: https://doi.org/10.1016/j.ecoleng.2006.08.001.
- Lei, Y. et al. (2023) “The removal of micropollutants from treated effluent by batch-operated pilot-scale constructed wetlands,” Water Research, 230, 119494. Available at: https://doi.org/10.1016/j.watres.2022.119494.
- Li, X. et al. (2024) “Recent advances and prospects of constructed wetlands in cold climates: A review from 2013 to 2023,” Environmental Science and Pollution Research, 31, pp. 44691–44716. Available at: https://doi.org/10.1007/s11356-024-34065-4.
- Limmer, M. and Burken, J. (2016) “Phytovolatilization of organic contaminants,” Environmental Science & Technology, 50(13), pp. 6632–6643. Available at: https://doi.org/10.1021/acs.est.5b04113.
- Lindholm-Lehto, P. (2023) “Water quality monitoring in recirculating aquaculture systems,” Aquaculture, Fish and Fisheries, 3(2), pp. 113–131. Available at: https://doi.org/10.1002/aff2.102.
- Liu, L. et al. (2013) “Potential effect and accumulation of veterinary antibiotics in Phragmites australis under hydroponic conditions,” Ecological Engineering, 53, pp. 138–143. Available at: https://doi.org/10.1016/j.ecoleng.2012.12.033.
- Liu, N. et al. (2024) “Non-phytoremediation and phytoremediation technologies of integrated remediation for water and soil heavy metal pollution: A comprehensive review,” Science of the Total Environment, 948, 174237. Available at: https://doi.org/10.1016/j.scitotenv.2024.174237.
- Mandal, R.N. and Bera, P. (2024) “Macrophytes used as multifaceted benefits including feeding, bioremediation, and symbiosis in freshwater aquaculture—A review,” Reviews in Aquaculture, 17(1), e12983. Available at: https://doi.org/10.1111/raq.12983.
- Milke, J. and Gałczyńska, M. (2021) “Potencjalne możliwości fitoremediacji wód zanieczyszczonych metalami toksycznymi na przykładzie Nasturtium officinale [Potential possibilities of Walters phytoremediation contaminated with toxic metals on the example of Nasturtium officinale],” Przemysł Chemiczny, 100(1), pp. 47–52. Available at: https://doi.org/10.15199/62.2021.1.3.
- Milke, J., Gałczyńska, M. and Wróbel, J. (2020) “The importance of biological and ecological properties of Phragmites Australis (Cav.) Trin. Ex Steud., in phytoremendiation of aquatic ecosystems—The review,” Water, 12(6), 1770. Available at: https://doi.org/10.3390/w12061770.
- Mustafa, H.M., Hayder, G. and Mustapa, S.I. (2022) “Circular economy framework for energy recovery in phytoremediation of domestic wastewater,” Energies, 15(9), 3075. Available at: https://doi.org/10.3390/en15093075.
- Naylor, S.J., Moccia, R.D. and Durant, G.M. (1999) “The chemical composition of settleable solid fish waste (manure) from commercial rainbow trout farms in Ontario, Canada,” North American Journal of Aquaculture, 61, pp. 21–26. Available at: https://doi.org/10.1577/1548-8454(1999)061<0021:TCCOSS>2.0.CO;2.
- Politaeva, N. and Badenko, V. (2021) “Magnetic and electric field accelerate Phytoextraction of copper Lemna minor duckweed,” PLoS ONE, 16(8), e0255512. Available at: https://doi.org/10.1371/journal.pone.0255512.
- Rahimi, R. et al. (2022) “How probiotics impact on immunological parameters in rainbow trout (Oncorhynchus mykiss)? A systematic review and meta-analysis,” Reviews in Aquaculture, 14, pp. 27–3. Available at: https://doi.org/10.1111/raq.12582.
- Rahman, M.M. (2015) “Role of common carp (Cyprinus carpio) in aquaculture production systems,” Frontiers in Life Science, 8(4), pp. 399–410. Available at: https://doi.org/10.1080/21553769.2015.1045629.
- Ranieri, E., Gikas, P. and Tchobanoglous, G. (2013) “BTEX removal in pilot-scale horizontal subsurface flow constructed wetlands,” Desalination and Water Treatment, 51(13–15), pp. 3032–3039. Available at: https://doi.org/10.1080/19443994.2012.748453.
- Rezania, S. et al. (2019) “Phytoremediation potential and control of Phragmites australis as a green phytomass: An overview,” Environmental Science and Pollution Research, 26, pp. 7428–7441. Available at: https://doi.org/10.1007/s11356-019-04300-4.
- Roy, K. et al. (2020) “Feed-based common carp farming and eutrophication: Is there a reason for concern?” Reviews in Aquaculture, 12(3), pp. 1736–1758. Available at: https://doi.org/10.1111/raq.12407.
- Rozporządzenie (2021) “Rozporządzenie Ministra Infrastruktury z dnia 25 czerwca 2021 r. w sprawie klasyfikacji stanu ekologicznego, potencjału ekologicznego i stanu chemicznego oraz sposobu klasyfikacji stanu jednolitych części wód powierzchniowych, a także środowiskowych norm jakości dla substancji priorytetowych [Regulation of the Minister of Infrastructure of 25 June 2021 on the classification of ecological status, ecological potential and chemical status and the method of classifying the status of surface water bodies, as well as environmental quality standards for priority substances],” Dz. U. 2021 poz. 1475.
- Rupassara, S.I. et al. (2002) “Degradation of atrazine by hornwort in aquatic systems,” Bioremediation Journal, 6(3), pp. 217–224. Available at: https://doi.org/10.1080/10889860290777576.
- Rusco, G. et al. (2024) “Can IMTA System improve the productivity and quality traits of aquatic organisms produced at different trophic levels? The benefits of IMTA—Not only for the ecosystem,” Biology, 13(11), 946. Available at: https://doi.org/10.3390/biology13110946.
- Sayanthan, S., Hasan, H.A. and Abdullah, S.R.S. (2024) “Floating aquatic macrophytes in wastewater treatment: Toward a circular economy,” Water, 16(6), 870. Available at: https://doi.org/10.3390/w16060870.
- Schulz, C., Gelbrecht, J. and Rennert, B. (2003) “Treatment of rainbow trout farm effluents in constructed wetland with emergent plants and subsurface horizontal water flow,” Aquaculture, 217(1–4), pp. 207–221. Available at: https://doi.org/10.1016/S0044-8486(02)00204-1.
- Seeger, E.M. et al. (2011) “Bioremediation of benzene-, MTBE-and ammonia-contaminated groundwater with pilot-scale constructed wetlands,” Environmental Pollution, 159(12), pp. 3769–3776. Available at: https://doi.org/10.1016/j.envpol.2011.07.019.
- Shen, S., Li, X. and Lu, X. (2021) “Recent developments and applications of floating treatment wetlands for treating different source waters: A review,” Environmental Science and Pollution Research, 28(44), pp. 62061–62084. Available at: https://doi.org/10.1007/s11356-021-16663-8.
- Stanivuk, J. et al. (2024) “The rank of intensification factors strength in intensive pond production of common carp (Cyprinus carpio L.),” Aquaculture, 583, 740584. Available at: https://doi.org/10.1016/j.aquaculture.2024.740584.
- Strzelczyk, M. and Steinhoff-Wrześniewska, A. (2019) “Effectiveness of domestic rural wastewater treatment in soil-plant system,” Geology, Geophysics and Environment, 45(4), pp. 247–247. Available at: https://doi.org/10.7494/geol.2019.45.4.247.
- Szarek, J., Skibniewska A.K. and Guziur, J. (eds.) (2008) Technologia produkcji rybackiej a jakość karpia. Wpływ rodzaju technologii produkcji rybackiej i jakości środowiska wodnego na wybrane wskaźniki hodowlane i patomorfologiczne karpia konsumpcyjnego (Cyprinus common carpio L.) [Fishing production technology and carp quality. The influence of the type of fishing production technology and the quality of the aquatic environment on selected breeding and pathomorphological parameters of the consumption carp (Cyprinus common carpio L.)]. Olsztyn, Pracownia Wydawnicza „ElSet”. Available at: https://db.iseki-food.net/sites/default/files/digital_library_attachments/technologia_produkcji_rybackiej_a_jakosc_karpia_0.pdf (Accessed: May 21, 2024).
- Terech-Majewska, E., Pajdak, J. and Siwicki, A.K. (2016) “Water as a source of macronutrients and micronutrients for fish, with special emphasis on the nutritional requirements of two fish species: the common carp (Cyprinus carpio) and the rainbow trout (Oncorhynchus mykiss),” Journal of Elementology, 21(3), pp. 947–961. Available at: https://doi.org/10.5601/jelem.2015.20.4.940.
- Tkachenko, H. et al. (2021) “Dietary nutrients and health risks from exposure to some heavy metals through the consumption of the farmed common carp (Cyprinus carpio),” Journal of Environmental Health Science and Engineering, 19, pp. 793–804. Available at: https://doi.org/10.1007/s40201-021-00647-4.
- Tolkou, A.K., Toubanaki, D.K. and Kyzas, G.Z. (2023) “Detection of arsenic, chromium, cadmium, lead, and mercury in fish: Effects on the sustainable and healthy development of aquatic life and human consumers,” Sustainability, 15(23), 16242. Available at: https://doi.org/10.3390/su152316242.
- Toyama, H. et al. (2020) “The effects of water pollution on the phylogenetic community structure of aquatic plants in the East Tiaoxi River, China,” Freshwater Biology, 65(4), pp. 632–645. Available at: https://doi.org/10.1111/fwb.13451.
- Toyama, T. et al. (2016) “Effects of planting Phragmites australis on nitrogen removal, microbial nitrogen cycling, and abundance of ammonia-oxidizing and denitrifying microorganisms in sediments,” Environmental Technology, 37, pp. 478–485. Available at: https://doi.org/10.1080/09593330.2015.1074156.
- Všetičková, L. et al. (2012) “Effects of semi-intensive carp pond farming on discharged water quality,” Acta Ichthyologica et Piscatoria, 42(3), pp. 223–231. Available at: https://doi.org/10.3750/AIP2011.42.3.06.
- Vymazal, J. (2022) “The historical development of constructed wetlands for wastewater treatment,” Land, 11(2), 174. Available at: https://doi.org/10.3390/land11020174.
- Wang, L. et al. (2024) “Multi-omics reveals the molecular mechanism of muscle quality changes in common carp (Cyprinus carpio) under two aquaculture systems,” Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 52, 101290. Available at: https://doi.org/10.1016/j.cbd.2024.101290.
- Wróbel, J. (2007) Kinetyka wzrostu oraz wybrane wskaźniki fizjologiczne Salix viminalis uprawianej na refulacie piaszczystym nawożonym osadem ściekowym [Growth kinetics and selected physiological parameters of Salix viminalis grown on sandy silt fertilised with sewage sludge], 239. Szczecin: Wydaw. Naukowe Akademii Rolniczej.
- Wróbel, J. et al. (2023) “The challenges of aquaculture in protecting the aquatic ecosystems in the context of climate changes,” Journal of Water and Land Development, 57, pp. 231–241. Available at: https://doi.org/10.24425/jwld.2023.145354.
- Wu, H. et al. (2023) “Constructed wetlands for pollution control,” Nature Reviews Earth & Environment, 4, pp. 218–234. Available at: https://doi.org/10.1038/s43017-023-00395-z.
- Yeh, T., Chou, C. and Pan, C. (2009) “Heavy metal removal within pilot-scale constructed wetlands receiving river water contaminated by confined swine operations,” Desalination, 249(1), pp. 368–373. Available at: https://doi.org/10.1016/j.desal.2008.11.025.
- Zheng, J.C. et al. (2016) “Competitive sorption of heavy metals by water hyacinth roots,” Environmental Pollution, 219, pp. 837–845. Available at: https://doi.org/10.1016/j.envpol.2016.08.001.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-332e915e-a379-438e-aac6-67429b085b63
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.