PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characteristics of the Porous Structure Developed Through Additive Manufacturing using Polyamide for Tissue Engineering Applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Additive manufacturing methods give the opportunity to produce interesting, new structures with a more complicated topology than would be possible using traditional methods. Methods: Using the selective laser sintering method, a disk with a high roughness and porous structure was produced. Studies of material surface were performed on microscopic devices. An in vitro experiment was performed on the manufactured disk using mice fibroblastic cells. Results: The designed shape enabled the growth of the cell culture in the disc pores and ensured impermeability of the disc base. Based on average viability 79%, which is close to reference well (80%), preliminary results confirmed that the manufactured structures create sufficiently comfortable conditions for the cell cultures without the need to design its internal topography. Conclusions: Controlling the production parameters of SLS printing allows to obtain structures characterized by spatial and surface porosity without designing inner geometry of the structure. Polyamide 2200 (PA2200) powder with a laser beam, offers new possibilities for producing surfaces used in the tissue engineering, bioreactors, and microfluidics devices.
Twórcy
  • Faculty of Mechanical and Industrial Engineering, Department of Machine Construction and Biomedical Engineering, Warsaw University of Technology, ul. Narbutta 85, 02-524, Warsaw, Poland
  • Faculty of Mechanical and Industrial Engineering, Department of Machine Construction and Biomedical Engineering, Warsaw University of Technology, ul. Narbutta 85, 02-524, Warsaw, Poland
  • Faculty of Mechanical and Industrial Engineering, Department of Machine Construction and Biomedical Engineering, Warsaw University of Technology, ul. Narbutta 85, 02-524, Warsaw, Poland
  • Faculty of Mechanical and Industrial Engineering, Plastics Processing Department, Warsaw University of Technology, Narbutta 85, 02-524, Warsaw, Poland
  • Railway Institute, Metrology Laboratory, ul. Chłopickiego Józefa 50, Warsaw, Poland
Bibliografia
  • 1. Bednarczyk E., Chondrocytes In Vitro Systems Allowing Study of OA, IJMS, 2022, 23(18): 10308, doi: 10.3390/ijms231810308.
  • 2. Bednarczyk E., Sikora S., Jankowski K., Żołek-Tryznowska Z., Murawski T., Bańczerowski J., Lu Y., Senderowski C. Mathematical model of osteophyte development with the first attempt to identify a biomechanical parameter, Continuum Mech. Thermodyn.s, 2024, doi: 10.1007/s00161-023-01272-2.
  • 3. Szymczyk-Ziółkowska P., Łabowska M.B., Detyna J., Michalak I., Gruber P. A review of fabrication polymer scaffolds for biomedical applications using additive manufacturing techniques, Biocybern. Biomed. Eng. 2022, 40(2): 624, doi: 10.1016/j. bbe.2020.01.015.
  • 4. Raveling A.R., Theodossiou S.K., Schiele N.R. A 3D printed mechanical bioreactor for investigating mechanobiology and soft tissue mechanics, MethodsX, 2018, 5: 924, doi: 10.1016/j.mex.2018.08.001.
  • 5. Pracon R. Grygoruk R., Kaczmarska E., Kepka C.,Konka M., Dzielinska Z., Witkowski A., Demkow M One extra plug to completely seal the left atrial appendage - procedure guided by 3D-printed model of the heart, Eur. Heart. J. 2017, 38, doi: 10.1093/ eurheartj/ehx495.1934.
  • 6. Pracon R., Grygoruk R., Konka M., Kepka C., Demkow M. Percutaneous closure of ventricular septal defect resulting from chest stab wound in an 18-year- old boy, Circulation: Cardiovascular Imaging, 2018, 11(11), doi: 10.1161/CIRCIMAGING.118.008326.
  • 7. Khan I., Prabhakar A., Delepine C., Tsang H., Pham V., Sur M. A low-cost 3D printed microfluidic bioreactor and imaging chamber for live-organoid imaging, Biomicrofluidics, 2021,15(2), doi: 10.1063/5.0041027.
  • 8. Achinas S., Heins J.-I., Krooneman J., Euverink G. J.W. Miniaturization and 3D Printing of Bioreactors: A Technological Mini Review, Micromachines,2020, 11(9): 853, doi: 10.3390/mi11090853.
  • 9. Gensler M. 3D printing of bioreactors in tissue engineering: A generalised approach, PLoS ONE, 2020, 15(11): 0242615, doi: 10.1371/journal.pone.0242615.
  • 10. Skalski K., Makuch A., Wysocki B., Jankowski K., Święszkowski W. Structure and porosity of titanium scaffolds manufactured by selective laser melting, Inżynieria Powierzchni, 2018, 23(32), doi: 10.5604/01.3001.0011.8029.
  • 11. Aschenbrenner D., Friedrich O., Gilbert D.F. 3D Printed lab-on-a-chip platform for chemical stimulation and parallel analysis of ion channel function, Micromachines, 2019, 10(8), doi: 10.3390/mi10080548.
  • 12. Gyimah N., Scheler O., Rang T., Pardy T. Can 3D printing bring droplet microfluidics to every lab? A systematic review, Micromachines, 2021, 12(3), doi: 10.3390/mi12030339.
  • 13. Wang H., Enders A., Preuss J.-A., Bahnemann J., Heisterkamp A., Torres-Mapa M.L. 3D printed microfluidic lab-on-a-chip device for fiber-based dual beam optical manipulation, Sci Rep, 2021, 11(1): 14584, doi: 10.1038/s41598-021-93205-9.
  • 14. Seddiqi H. Inlet flow rate of perfusion bioreactors affects fluid flow dynamics, but not oxygen concentration in 3D-printed scaffolds for bone tissue engineering: Computational analysis and experimental validation, Comput. Biol. Med. 2020, 124: 103826,doi: 10.1016/j.compbiomed.2020.103826.
  • 15. Yazdi A.A., Popma A., Wong W., Nguyen T., Pan Y., Xu J. 3D printing: an emerging tool for novel microfluidics and lab-on-a-chip applications, Microfluid Nanofluid, 2016, 20(3): 50, doi: 10.1007/ s10404-016-1715-4.
  • 16. Malashin I., Martysyuk D., Tynchenko V., Nelyub V., Borodulin A., Galinovsky A. Mechanical testing of selective-laser-sintered polyamide PA2200 Details: analysis of tensile properties via finite element method and machine learning approaches, Polymers 2024, 16(6): 737, doi: 10.3390/polym16060737.
  • 17. Saffarzadeh M., Gillispie G.J., Brown P. Selective laser sintering (SLS) rapid protytping technology: A review of medical applications., In 53rd Annual Rocky Mountain Bioengineering Symposium, RMBS 2016 and 53rd International ISA Biomedical Sciences Instrumentation Symposium, 2016, 142.
  • 18. Berry E. Preliminary experience with medical applications of rapid prototyping by selective laser sintering, Medical Engineering & Physics, 1997, 19(1): 90, doi: 10.1016/S1350-4533(96)00039-2.
  • 19. Razaviye M.K., Tafti R.A., Khajehmohammadi M. An investigation on mechanical properties of PA12 parts produced by a SLS 3D printer: An experimental approach, CIRP Journal of Manufacturing Science and Technology, 2022, 38: 760, doi: 10.1016/j. cirpj.2022.06.016.
  • 20. Pilipović A., Ilinčić P., Tujmer M., Rujnić Havstad M. Impact of part positioning along chamber Z-Axis and processing parameters in selective laser sinter- ing on polyamide properties, Appl. Sci. 2024, 14(3): 976, doi: 10.3390/app14030976.
  • 21. Matuš M. Geometric accuracy of components manufactured by SLS technology regarding the orientation of the model during 3D printing, Manufacturing Technology, 2023, 23(2): 233, doi: 10.21062/ mft.2023.027.
  • 22. Korycki A., Garnier C., Nassiet V., Sultan C.T., Chabert F. Optimization of mechanical properties and manufacturing time through experimental and statistical analysis of process parameters in selective laser sintering, Adv. Mater. Sci. Eng. 2022, 1–15, doi: 10.1155/2022/2526281.
  • 23. Fabijański M., Garbarski J. Strength of thermoplastic starch filled with calcium carbonate, Przem. Chem. 2024, 103(3): 417, doi: 10.15199/62.2024.3.12.
  • 24. Lopes A.C., Sampaio A.M., Pontes A.J. The influence of the energy density on dimensional, geometric, mechanical and morphological properties of SLS parts produced with single and multiple exposure types”, Prog Addit Manuf, 2022, 7(4): 683, doi:10.1007/s40964-021-00254-7.
  • 25. Zochowski P. Ballistic impact resistance of bulletproof vest inserts containing printed titanium structures, Metals, 2021, 11(2): 225, doi: 10.3390/ met11020225.
  • 26. Anwajler B., Szołomicki J., Noszczyk P., Baryś M. The potential of 3D printing in thermal insulating composite materials—experimental determination of the impact of the geometry on thermal resistnce, Materials 2024, 17(5): 1202, doi: 10.3390/ ma17051202.
  • 27. Bernaczek J. Analysis of torsional strength of PA2200 material shape additively with the selective laser sintering technology, Adv. Sci. Technol. Res. J. 2023, 17(2): 12, doi: 10.12913/22998624/158838.
  • 28. Zhu L. Design and compressive fatigue properties of irregular porous scaffolds for orthopedics fabricated using selective laser melting, ACS Biomater. Sci. Eng. 2021, 7(4): 1663, doi: 10.1021/ acsbiomaterials.0c01392.
  • 29. Du Y. Design and statistical analysis of irregular porous scaffolds for orthopedic reconstruction based on voronoi tessellation and fabricated via selective laser melting (SLM), Mater. Chem. Phys. 2020, 239: 121968, doi: 10.1016/j.matchemphys.2019.121968.
  • 30. Fabijański M. Study of the single-screw extrusion process using polylactide. Polymers 2023, 15: 3878. doi: 10.3390/polym15193878.
  • 31. Garbarski J., Fabijański M. Strength of the thermoplastic starch/polylactide mixture, Przem. Chem. 2024, 103(4): 381, doi: 10.15199/62.2024.3.5.
  • 32. https://store.eos.info/products/pa-2200-polyamide-12
  • 33. Fabijański M. Properties of polyamide designed to be used in the elastic rail fasteners, Railway Prob- lems, 2014, 58(165): 21.
  • 34. Riza S.H., Masood S.H., Rashid R.A.R., Chandra S. Selective laser sintering in biomedical manufacturing, Metallic Biomaterials Processing and Medical Device Manufacturing, Elsevier, 2020, 193, doi: 10.1016/B978-0-08-102965-7.00006-0.
  • 35. Rahim T.N.A.T., Abdullah A.M., Md Akil H., Mohamad D., Rajion V. The improvement of mechan-ical and thermal properties of polyamide 12 3D printed parts by fused deposition modelling, Express. Polym. Lett. 2017, 11(12): 963, doi: 10.3144/ expresspolymlett.2017.92.
  • 36. Krishnakumar S., Senthilvelan T. Polymer composites in dentistry and orthopedic applications-a review, Materials Today: Proceedings. 2021, 46: 9707, doi: 10.1016/j.matpr.2020.08.463.
  • 37. Hariharan K., Sugavaneswaran M., Arumaikkannu G. Structural, mechanical and invitro study on pulsed laser deposition of hydroxyapatite on additive manufactured substrate, Proc. of the 2nd Intl. Conf. on Progress in Additive Manufacturing, 2016.
  • 38. Hui D., Goodridge V., Scotchford C.A., Grant D.M. Laser sintering of nano-hydroxyapatite coated polyamide 12 powders, Additive Manufacturing, 2018, 22: 560, doi: 10.1016/j.addma.2018.05.045.
  • 39. Rotella G., Del Prete A., Muzzupappa M., Umbrello D. Innovative manufacturing process of functionalized PA2200 for reduced adhesion properties, JMMP, 2020, 4(2): 36, doi:10.3390/jmmp4020036.
  • 40. Papazoglou E.L., Karkalos N.E., Karmiris- Obratański P., Markopoulos A.P. On the modeling and simulation of SLM and SLS for metal and polymer powders: A review, Arch. Computat. Methods. Eng, 2022, 29(2): 941, doi: 10.1007/ s11831-021-09601-x.
  • 41. Gueche Y.A., Sanchez-Ballester N.M., Cailleaux S., Bataille B., Soulairol I. Selective laser sintering (SLS), a new chapter in the production of solid oral forms (SOFs) by 3D printing, Pharmaceutics, 2021, 13(8): 8, doi: 10.3390/pharmaceutics13081212.
  • 42. Awad A., Fina F., Goyanes A., Gaisford S., Basit A.W. 3D printing: Principles and pharmaceutical applications of selective laser sintering, Int. J. Pharm. 2022, 586: 119594, doi: 10.1016/j. ijpharm.2020.119594.
  • 43. Magrofuoco E., Flaibani M., Giomo M., Elvassore N. Cell culture distribution in a three-dimensional porous scaffold in perfusion bioreactor, Biochem. Eng. J. 2019, 146: 10, doi: 10.1016/j. bej.2019.02.023.
  • 44. Voelcker N.H., Low S.P. Cell culture on porous sili- con, Handbook of Porous Silicon, L. Canham, Red., Cham: Springer International Publishing, 2018, 728. doi: 10.1007/978-3-319-71381-6_50.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-332a9b50-b762-4cb5-afd6-2df03db96d8f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.