PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Relationship Between Bake Hardening, Snoek-Köster and Dislocation-Enhanced Snoek Peaks in Coarse Grained Low Carbon Steel

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present work, specimens prepared from coarse grained low carbon steel with different prestrains were baked and then, their bake hardening (BH) property and internal friction were determined. TEM was used to characterize the dislocation structure in BH treated samples. The measurements of internal friction in prestrained samples and baked samples were carried out using a multifunctional internal friction apparatus. The results indicate that, in coarse grained low carbon steel, the bake hardening properties (BH values) were negative, which were increased by increasing the prestrain from 2 to 5%, and then were decreased by increasing the prestrain from 5 to 10%. In the specimen with prestrain 5%, the BH value reached the maximum value and the height of Snoek-Köster peak was observed to be the maximum alike. With increasing the prestrain, both of the BH value and Snoek-Köster peak heights are similarly varied. It is concluded that Snoek-Köster and dislocation-enhanced Snoek peaks, caused by the interactions between interstitial solute carbon atoms and dislocations, can be used in further development of the bake hardening steels.
Twórcy
autor
  • School of Materials and Metallurgy, University of Science and Technology Liaoning, Liaoning Anshan, China 114051
autor
  • School of Materials and Metallurgy, University of Science and Technology Liaoning, Liaoning Anshan, China 114051
autor
  • tate Key Laboratory of Rolling Technology and Rolling Automation, Liaoning, Shenyang, China 110000
autor
  • Iron and Steel Research Institute of Angang Group, Liaoning, Anshan, China 114009
Bibliografia
  • [1] E. C. Oren, Automotive materials and technology for 21st century, 39th Mechanical Working and Steel Processing Conference Proceedings, Iron & Steel Society, Warrendale, PA, USA, 639-643 (1997).
  • [2] R. P. Foley, M. E. Fine, S. K. Bhat, Bake hardening steels: Toward improved formability and strength, ibid., 653-666 (1997).
  • [3] E. Hoggan, G. Mu Sung, Cold rolled batch annealed bake hardening steel for automotive industry, ibid., 17-29 (1997).
  • [4] A. Van Snick, D. Vanderschuren, S. Vandeputte, J. Dilewijns, Influence of carbon and coiling temperature on hot and cold rolled properties of bake hardenable Nb-ULC steels, ibid., 225-232 (1997).
  • [5] K. A. Taylor, J. G. Speer, Development of vanadium-alloyed, bake hardenable sheet steels for hot-dip coated applications, ibid., 49-61 (1997).
  • [6] A. Pichler, H. Spindler, T. Kurz, R. Mandyczewsky, M. Pimminger, P. Stiaszny, Hot-dip galvanized bake hardening grades, a comparison between LC and ULC concepts, ibid., 63-81 (1997).
  • [7] A. S. Nowick, B. S. Berry, Anelastic Relaxation in Crystalline Solids, Academic Press, New York (1972).
  • [8] R. De Batist, Internal Friction of Structural Defects in Crystalline Solids, North-Holland, Amsterdam, 1972.
  • [9] L. B. Magalas, Mechanical spectroscopy – Fundamentals, Sol. St. Phen. 89, 1-22 (2003).
  • [10] S. Etienne, S. Elkoun, L. David, L. B. Magalas, Mechanical spectroscopy and other relaxation spectroscopies, Sol. St. Phen. 89, 31-66 (2003).
  • [11] R. Schaller, G. Fantozzi, G. Gremaud (Eds.) Mechanical Spectroscopy Q-1 2001, Mat. Science Forum 366-368 (2001).
  • [12] L. B. Magalas, Mechanical spectroscopy, internal friction and ultrasonic attenuation. Collection of works, Mater. Sci. Eng. A 521-522, 405-415 (2009).
  • [13] Z. L. Pan, R. R. Hosbons, Determination of interstitial carbon and nitrogen in low carbon steels, 39th Mechanical Working and Steel Processing Conference Proceedings, Iron and Steel Society, Warrendale, PA, USA, 241-254 (1997).
  • [14] L. J. Baker, J. D. Parker, S. R. Daniel, Mechanism of bake hardening in ultralow carbon steel containing niobium and titanium additions, Materials Science and Technology 18, 541-547 (2002).
  • [15] B. C. De Cooman, H. Dillen, H. Storms, I. Bultinck, P. Buysse, I. G. Ritchie, M. Kuhn, M. Fiorucci, N ageing in aluminized steel sheet: an industrial application of high frequency internal friction measurements to point defect-interface interactions, J. Alloy Compd. 211/212, 619-624 (1994).
  • [16] A. K. De, S. Vandeputte, B. C. De Cooman, Static strain aging behavior of ultra-low carbon bake hardening steel, Scripta Materialia 41, 831-837 (1999).
  • [17] A. K. De, K. De Blauwe, S. Vandeputte, B. C. De Cooman, Effect of dislocation density on the low temperature aging behavior of an ultra low carbon bake hardening steel, J. Alloy Compd. 310, 405-410 (2000).
  • [18] R. Fu, Y. Su, P. Ye, X. Wei, L. Li, J. Zhang, Internal friction on the bake-hardening behavior of 0.11C-1.67Mn-1.19Si TRIP steel, J. Mater. Sci. Technol. 25, 141-144 (2009).
  • [19] A. H. Cottrell, B. A. Bilby, Dislocation theory of yielding and strain ageing in iron, Proc. Phys. Soc. 62A, 49-62 (1949).
  • [20] R. W. Cahn, P. Haasen, Physical Metallurgy, 3ed., North-Holland Physics Publishing, Amsterdam, Part II, Chapter 16, Chapter 19 and Chapter 21 (1983).
  • [21] P. Elsen, H. P. Hougardy, On the mechanism of bake-hardening, Steel Research 64, 431-436 (1993).
  • [22] D. V. Wilson, B. Russell, The contribution of atmosphere locking to the strain-ageing of low carbon steels, Acta Metallurgica 8, 36-45 (1960).
  • [23] J. Z. Zhao, A. K. De, B. C. De Cooman, A model for the Cottrell atmosphere formation during aging of ultra low carbon bake hardening steels, ISIJ International 40, 725-730 (2000).
  • [24] J. Z. Zhao, A. K. De, B. C. De Cooman, Formation of the Cottrell atmosphere during strain aging of bake-hardenable steels, Metallurgical and Materials Transactions, A33, 417-423 (2001).
  • [25] J. Z. Zhao, A. K. De, B. C. De Cooman, Kinetics of Cottrell atmosphere formation during strain aging of ultra-low carbon steels, Materials Letters 44, 374-378 (2000).
  • [26] A. D. De, S. Vandeputte, B. C. De Cooman, Kinetics of strain aging in bake hardening ultra low carbon steel - a comparison with low carbon steel, Journal of Materials Engineering and Performance 10, 567-575 (2001).
  • [27] Il-Chan Jung, D. G. Kang, B. C. De Cooman, Impulse excitation internal friction study of dislocation and point defect interactions in ultra-low carbon bake-hardenable steel, Metall. Mater. Trans. 45A, 1963-1978 (2013).
  • [28] J. Takahashi, M. Sugiyama, N. Maruyama, Quantitative observation of grain boundary carbon segregation in bake-hardening steels, Nippon Steel Technical Report 91, 28-33 (2005).
  • [29] B. Soenen, A. K. De, S. Vandeputte, B. C. De Cooman, Competition between grain boundary segregation and Cottrell atmosphere formation during static strain aging in ultra-low carbon bake hardening steels, Acta Materialia 52, 3483-3492 (2004).
  • [30] Ch. F. Kuang, J. Wang, J. Li, S. G. Zhang, H. F. Liu, H. L. Yang, Effect of continuous annealing on microstructure and bake hardening behavior of low carbon steel, Journal of Iron and Steel Research International 22, 163-170 (2015).
  • [31] A. K. De, S. Vandeputte, B. Soenen, B. C. De Cooman, Effect of grain size on the static strain aging of a ULC-bake hardening steel, Z. Metallkunde, 95, 713-717 (2004).
  • [32] Xu Tingdong, Cheng Buyuan, Kinetics of non-equilibrium grain-boundary segregation, Progress in Materials Science 49, 109-208 (2004).
  • [33] Cui Yan, Ji Aimin, Feng YunLi, Wang Ruizhen, Yong Qilong, Effect of grain size and annealing condition on grain boundary segregation of carbon atoms in ULC steel, Applied Mechanics and Materials 302, 286-291 (2013).
  • [34] Jiling Dong, Yinsheng He, Chan-Gyu Lee, Byungho Lee, Jeongbong Yoon, Keesam Shin, Detection and determination of solute carbon in grain interior to correlate with the overall carbon content and grain size in ultra-low-carbon steel, Microsc. Microanal. 19, S5, 66-68 (2013).
  • [35] L. B. Magalas, Development of high-resolution mechanical spectroscopy, HRMS: status and perspectives. HRMS coupled with a laser dilatometer, Arch. Metall. Mater. 60, 2069-2076 (2015).
  • [36] J. L. Snoek, Effect of small quantities of carbon and nitrogen on the elastic and plastic properties of iron, Physica 8, 711-733 (1941).
  • [37] M. Koiwa, A note on Dr. J. L. Snoek, Mat. Sci. Eng. A 370, 9-11 (2004).
  • [38] M. Weller, Anelastic relaxation of point defects in cubic crystals, J. Phys. IV, 6, 63-72 (1996).
  • [39] L. B. Magalas, G. Fantozzi, Mechanical spectroscopy of the carbon Snoek relaxation in ultra-high purity iron, J. Phys. IV, 6, 151-154 (1996).
  • [40] M. Weller, The Snoek relaxation in bcc metals – from steel wire to meteorites, Mat. Sci. Eng. A 442, 21-30 (2006).
  • [41] M. Weller, Point defect relaxations, Mat. Science Forum 366-368, 95-137 (2001).
  • [42] L. B. Magalas, G. Fantozzi, J. Rubianes, T. Malinowski, Effect of texture on the Snoek relaxation in a commercial rolled steel, J. Phys. IV, 6, 147-150 (1996).
  • [43] K. Eloot, J. Dilewijns, Calculation of the effect of texture on the Snoek peak height in steels, ISIJ Int. 37, 610-614 (1997).
  • [44] K. Eloot, L. Kestens, J. Dilewijns, Effect of texture on the height of the Snoek peak in electrical steels, ISIJ Int. 37, 615-622 (1997).
  • [45] L. J. Baker, J. D. Parker, S. R. Daniel, The use of internal friction techniques as a quality control tool in the mild steel industry, Journal of Materials Processing Technology 143 , 442-447 (2003).
  • [46] R. P. Krupitzer, C. J. Szczepanski, R. Gibala, Effects of preferred orientation on Snoek phenomena in commercial steels, Mat. Sci. Eng. A 521 , 43-46 (2009).
  • [47] D. E. Jiang, E.A. Carter, Carbon dissolution and diffusion in ferrite and austenite from first principles, Physical Rev. B 67,214103 (2003).
  • [48] C. Domain, C. S. Becquart, J. Foct, Ab initio study of foreign interstitial atom (C, N) interactions with intrinsic point defects in a-Fe, Physical Rev. B 69 , 144112 (2004).
  • [49] S. Garruchet, M. Perez, Modelling of carbon Snoek peak in ferrite: Coupling molecular dynamics and kinetic Monte-Carlo simulations, Computational Materials Science 43 , 286-292 (2008).
  • [50] Shifang Xiao, Fuxing Yin, Wangyu Hu, The anisotropic character of Snoek relaxation in Fe-C system: A kinetic Monte Carlo and molecular dynamics simulation, Phys. Stat. Solidi B 252 , 1382-1387 (2015).
  • [51] L. B. Magalas, P. Moser, I. G. Ritchie, The dislocation-enhanced Snoek peak in Fe-C alloys, Journal de Physique 44 (C9), 645-649 (1983).
  • [52] L. B. Magalas, S. Gorczyca, The dislocation-enhanced Snoek effect ‒ DESE in Iron, Journal de Physique 46 (C10), 253-256 (1985).
  • [53] J. Rubianes, L. B. Magalas, G. Fantozzi, J. San Juan, The dislocation-enhanced Snoek effect (DESE) in high purity iron doped with different amounts of carbon, Journal de Physique 48 , 185-190 (1987).
  • [54] L. B. Magalas, D.H. Niblett, Dislocation relaxations in solids, Journal de Physique, 48 , (C8), 209-217 (1987).
  • [55] P. Palcek, S. Fogelton, Influence of the ageing and plastic deformation on temperature dependence of internal friction, Kovove Materialy, 34 , 241-248 (1996).
  • [56] G. V. Serzhantova, N. Ya. Matveeva, I. S. Golovin, S. A. Golovin, Effect of plastic strain on the temperature spectrum of internal friction of austenitic and ferritic steels, Metal Science and Heat Treatment 39 , 376-383 (1997).
  • [57] L. B. Magalas, On the interaction of dislocations with interstitial atoms in BCC metals using mechanical spectroscopy: the Cold Work (CW) peak, the Snoek-Köster (SK) peak, and the Snoek-Kê-Köster (SKK) peak. Dedicated to the memory of Professor Ting-Sui Kê, Acta Metallurgica Sinica 39 , 1145-1152 (2003).
  • [58] L. B. Magalas, The Snoek-Köster (SK) relaxation and dislocation-enhanced Snoek effect (DESE) in deformed iron, Sol. St. Phen. 115, 67-72 (2006).
  • [59] L. B. Magalas, Determination of the logarithmic decrement in mechanical spectroscopy, Sol. St. Phen. 115, 7-14 (2006).
  • [60] L. B. Magalas, T. Malinowski, Measurement techniques of the logarithmic decrement, Sol. St. Phen. 89, 247-260 (2003).
  • [61] L. B. Magalas, A. Stanisławczyk, Advanced techniques for determining high and extreme high damping: OMI - A new algorithm to compute the logarithmic decrement, Key Eng. Mat. 319, 231-240 (2006).
  • [62] L. B. Magalas, M. Majewski, Recent advances in determination of the logarithmic decrement and the resonant frequency in low-frequency mechanical spectroscopy, Sol. St. Phen. 137, 15-20 (2008).
  • [63] L. B. Magalas, M. Majewski, Toward high-resolution mechanical spectroscopy HRMS. Logarithmic decrement, Sol. St. Phen. 184, 467-472 (2012).
  • [64] Dongowi Kim, J. G. Speer, B. C. de Cooman, Isothermal transformation of a CMnSi steel below the MS temperature, Metallurgical and Materials Transactions A, 42, 1575-1585 (2011).
  • [65] Dongowi Kim, Seok-Jae Lee, B. C. de Cooman, Microstructure of low C steel isothermally transformed in the MS to Mf temperature range, Metallurgical and Materials Transactions A 43, 44967-4983 (2012).
  • [66] B. C. De Cooman, Influence of interstitial-dislocation interactions on the γ-relaxation and Snoek-Kê-Köster relaxation in steel, International Symposium on Steel Science, ISSS 2012, Kyoto, Japan.
  • [67] I. Jung, B. C. de Cooman, The IF spectrum of Fe-C-N and Fe-17%Cr-C-N alloys measured by the impulse excitation technique, Sol. St. Phen. 184, 209-214 (2012).
  • [68] Won Seok Choi, Jewoong Lee, B. C. De Cooman, Internal-friction analysis of dislocation-interstitial carbon interactions in press-hardened 22MnB5 steel, Materials Science and Engineering A 639, 439-447 (2015).
  • [69] G. Schoeck, Friccion interna debido a la interaction entre dislocaciones y atomos solutos, Acta Metallurgica 11, 617-622 (1963).
  • [70] L. B. Magalas, J. F. Dufresne, P. Moser, The Snoek-Köster relaxation in iron, J. de Phys. 42, 127-132 (1981).
  • [71] G. Schoeck, The cold work peak, Scripta Metall. 16, 233-239 (1982).
  • [72] A. Seeger, The kink-pair-formation theory of the Snoek-Köster relaxation, Scripta Metall. 16, 241-247 (1982).
  • [73] G. Schoeck, On the mechanism of the Snoek-Koester relaxation, Scripta Metall. 22, 389-394 (1988).
  • [74] A. Seeger, A theory of the Snoek-Köster relaxation (cold-work peak) in metals, phys. stat. sol. (a) 55, 457-468 (1979).
  • [75] K. L. Ngai, Y. N. Wang, L. B. Magalas, Theoretical basis and general applicability of the coupling model to relaxations in coupled systems, J. Alloy Compd. 211/212, 327-332 (1994).
  • [76] L. B. Magalas, The Snoek-Köster relaxation. New insights ‒ New paradigms, J. de Phys. IV, 6, 163-172 (1996).
  • [77] L. B. Magalas, Diffusion in the Cottrell atmosphere, Defect and Diffusion Forum 194-199, 115-120 (2001).
  • [78] K. L. Ngai, Relaxation and Diffusion in Complex Systems, Springer, New York, 2011.
  • [79] H. Numakura, M. Koiwa, The Snoek relaxation in dilute ternary alloys. A review, J. de Phys. IV 6, 97-106 (1996).
  • [80] H. Numakura, Mechanical relaxation due to interstitial solutes in metals, Sol. St. Phen. 89, 93-114 (2003).
  • [81] M. S. Blanter, L. B. Magalas, Strain-induced interaction of dissolved atoms and mechanical relaxation in solid solutions. A review, Sol. St. Phen. 89, 115-139 (2003).
  • [82] P. T. Liu, W. W. Xing, X. Y. Cheng, D. Z. Li, Y. Y. Li, X. Q. Chen, Effects of dilute substitutional solutes on interstitial carbon in a-Fe: Interactions and associated carbon diffusion from first-principles calculations, Phys. Rev. B 90, 024103 (2014).
  • [83] H. Saitoh, N. Yoshinaga, K. Ushioda, Influence of substitutional atoms on the Snoek peak of carbon in b.c.c. iron, Acta Materialia 52, 1255-1261 (2004).
  • [84] Y. You, M. F. Yan, Interactions of foreign interstitial and substitutional atoms in bcc iron from ab initio calculations, Physica B 417, 57-69 (2013).
  • [85] A. A. Vasilyev, Hu-Chul Lee, N. L. Kuzmin, Nature of strain aging stages in bake hardening steel for automotive application, Materials Science and Engineering A 485, 282-289 (2008).
  • [86] M. S. Blanter, L. B. Magalas, Carbon-substitutional interaction in austenite, Scripta Materialia 43, 435-440 (2000).
  • [87] Chong Zhang, Jie Fu, Ruihuan Li, Pengbo Zhang, Jijun Zjao, Chuang Dong, Solute/impurity diffusivities in bcc Fe: A first-principles study, Journal of Nuclear Materials 455, 354-359 (2014).
  • [88] L. B. Magalas, M. Majewski, Ghost internal friction peaks, ghost asymmetrical peak broadening and narrowing. Misunderstandings, consequences and solution, Mater. Sci. Eng. A 521-522, 384-388 (2009).
  • [89] L. B. Magalas, A. Piłat, The zero-point drift in resonant mechanical spectroscopy, Sol. St. Phen. 115, 285-292 (2006).
  • [90] M. Majewski, A. Piłat, L.B. Magalas, Advances in Computational High-Resolution Mechanical Spectroscopy HRMS. Part 1 - Logarithmic Decrement, IOP Conf. Series: Materials Science and Engineering 31, 012018 (2012).
  • [91] Z. S. Li, Q. F. Fang, S. Veprek, S. Z. Li, Torsion pendulum method to evaluate the internal friction and elastic modulus of films, Review of Scientific Instruments 74, 2477-2480 (2003).
Uwagi
EN
W.J. Li would like to express her thanks to the National Natural Science Foundation of China for the funding support and two technical reviewers and anonymous cross-disciplinary reviewers.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3329b04f-a694-45b4-b841-325bbabbeb7d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.