PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The application of probability density function in modeling of wind speed on the Polish Batlic Coast

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the research was to identify the potential for the use of probability density functions (PDF) in modeling of near-surface wind speed. The approaches of Empirical Orthogonal Functions (EOF) and Canonical Correlation Analysis (CCA) are used in combination with 2-parametric Weibull distribution. The downscaling model was built using a diagnosed relationship between sea level pressure (SLP) patterns over Europe and the Northern Atlantic and estimated monthly values of Weibull parameters at 9 stations along the Polish Baltic Coast. The obtained scale (A) and shape (k) parameters make it possible to describe temporal variations of wind fields and their theoretical probability values. This may have further application in the modeling of extreme wind speeds for seasonal forecasting, climate prediction or in historical reconstructions. The model evaluation was done separately for the calibration (1971-2000) and validation periods (2001-2010). The scale parameter was reconstructed reasonably, while there were some problematic issues with the shape parameter, especially in the validation period. The quality of the developed models is generally higher for the winter season, due to larger SLP gradients, whereas the results for the spring and summer seasons were less satisfactory. Despite this, the 99th percentile of theoretical wind speeds are in most cases satisfactory, due to the lesser importance of the shape parameter for typical distributions in the analyzed region.
Twórcy
autor
  • Adam Mickiewicz University in Poznań, Department of Climatology, Dzięgielowa Street 27, 61-680 Poznań, Poland
Bibliografia
  • Araźny A., Przybylak R., Vizi Z., Kejna M., Maszewski R., Uscka-Kowalkowska J., 2007, Mean and extreme wind speed in Central Europe during the period 1951-2005 (On the basis of data from NCEP/NCAR Reanalysis Project), Geographia Polonica, 80 (2), 69-78
  • Benestad R.E., Hanssen-Bauer I., Chen D., 2008, Empirical-Statistical Downscaling, World Scientific Publishing Co.
  • Bernardin F., Bossy M., Chauvin M., Drobinski C., Rousseau P., Salameh A., 2009, Stochastic downscaling method: application to wind refinement, Stochastic Environmental Research and Risk Assessment, 23, 851-859, DOI: 10.1007/s00477-008-0276-9
  • Buishand T.A., Brandsma T., 2001, Multisite simulation of daily precipitation and temperature in the Rhine Basin by nearest neighbour resampling, Water Resources Research, 37 (11), 2761-2776, DOI: 10.1029/2001WR000291
  • Chromow S.P., 1969, Meteorologia i Klimatologia, PWN, Warszawa
  • Czernecki B., 2013, Creating wind field time-series over the Southern Baltic area using dynamical downscaling approach, Meteorologische Zeitschrift, 22 (5), 587-593, DOI: 10.1127/0941-2948/2013/0454
  • Delignette-Muller M.L., Pouillot R., Denis J.-B., Dutang C., 2010, Fitdistrplus: help to fit of a parametric distribution to non-censored or censored data
  • Huth R., Miksovsky J., Stepanek P., Belda M., Farda A., Chladova Z., Pisoft P., 2014, Comparative validation of statistical and dynamical downscaling models on a dense grid in central Europe: temperature, Theoretical and Applied Climatology, DOI: 10.1007/s00704-014-1190-3
  • IPCC, 2007, Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernental Panel on Climate Change, IPCC, Geneva, 104 pp.
  • Kalnay E., Kanamitsu M., Kistler R., et al., 1996, The NCEP/NCAR 40-year Reanalysis Project, Bulletin of the American Meteorology Society, 77, 437-471, DOI: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
  • Lorenc H., 1992, Zasoby wiatru w Polsce, Materiały Badawcze IMWG, seria: Meteorologia, 18, IMGW, Warszawa
  • Lorenc H., 1996, Struktura i zasoby energetyczne wiatru w Polsce, Materiały Badawcze IMGW, seria: Meteorologia, 25, IMGW, Warszawa
  • Lorenc H., 2012, Maksymalne prędkości wiatru w Polsce, IMGW-PIB, Warszawa, 100 pp.
  • Lorenz E.N., 1956, Empirical Orthogonal Function and Statistical Weather Prediction, Statistical forecasting project, Scientific Report No. 1, MIT Cambridge
  • Maraun D.F., Wetterhall A.M., Ireson A.M., Chandler R.E., Kendon E.J., Widmann M., Brienen S., Rust H.W., Sauter T., Themessl M., Venema V.K.C., Chun K.P., Goodess C.M., Jones R.G., Onof C., Vrac M., Thiele-Eich I., 2010, Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user, Reviews of Geophysics, 48 (3), 1-34, DOI: 10.1029/2009RG000314
  • Miętus M., 1999, Rola regionalnej cyrkulacji atmosferycznej w kształtowaniu warunków klimatycznych i oceanograficznych w polskiej strefie brzegowej Morza Bałtyckiego, Materiały Badawcze IMGW, seria: Meteorologia, 29, IMGW, Warszawa, 157 pp.
  • Mortensen N.G., LandbergL. , Troen I., Petersen E.L., Rathmann O., Nielsen M., 2004, WAsP Utility Programs. Risø-I2261(EN), Risø National Laboratory Roskilde, 52 pp.
  • Pramod J., 2011, Wind Energy Engineering, The McGraw-Hill Companies, Inc., 330 pp.
  • Pryor S.C., Schoof J.T., Barthelmie R.J., 2006, Winds of change? Projections of near-surface winds under climate change scenarios, Geophysical Research Letters, 33 (11), L11702, DOI: 10.1029/2006GL026000
  • Pryor S.C., Schoof J.T., Barthelmie R.J., 2005, Empirical downscaling of wind speed probability distributions, Journal of Geophysical Research: Atmospheres, 110 (D19), D19110, DOI: 10.1029/2005JD005899
  • R Core Team, 2013, R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, online access on http://www.R-project.org/
  • Preisendorfer R.W., 1988, Principal component analysis in meteorology and oceanography. Elsevier, Amsterdam, 436 pp.
  • Seguro J.V., Lambert T.W., 2000, Modern estimation of the parameters of the Weibull wind speed distribution for wind energy analysis. Journal of Wind Engineering and Industrial Aerodynamics, 85 (1), 75-84, DOI: 10.1016/S01676105(99)00122-1
  • Simpson J.E., 1994, Sea breeze and local winds, Cambridge University Press, 264 pp.
  • STARDEX, 2005, Recommendation on the more robust statistical and dynamical downscaling methods for the construction of scenarios of extremes, Deliverable D 16 – Summary Report
  • Storch von H., Zwiers F.W., 2001, Statistical Analysis in Climate Research, Cambridge University Press, 499 pp.
  • Taylor K.E., 2001, Summarizing multiple aspects of model performance in a single diagram, Journal of Geophysical Research: Atmospheres, 106 (D7), 7183-7192, DOI: 10.1029/2000JD900719
  • Troen I., Petersen E.L., 1989, European Wind Atlas, Risø National Laboratory, Roskilde. 656 pp.
  • Turner R., Zheng X., Gordon N., Uddstrom M., Pearson G., de Vos R., Moore R., 2011, Creating Synthetic Wind Speed Time Series for 15 New Zealand Wind Farms, Journal of Applied Meteorology and Climatology, 50 (12), 2394-2409, DOI: 10.1175/2011JAMC2668.1
  • Wilks D.S., 2008, Statistical Methods in the Atmospheric Sciences, 2nd ed., International Geophysics Series, 59, Academic Press, 627 pp.
  • Wójcik R., Pilarski M., Miętus M., 2014, Statistical downscaling of probability density function of daily precipitation on the Polish coast, Meteorology Hydrology and Water Management, 2 (1), 27-36
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3328c861-e313-43b7-87ff-affca2a731f6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.