PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermodynamic analysis of radiating nanofluids mixed convection within concentric pipes filled with a porous medium

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the entropy generation resulting from heat and mass transfer of waterbased nanofluid through an annulus within two concentric vertical pipes filled with a porous medium is investigated. This study considers the effects of thermal radiation, viscous dissipation, thermal buoyancy, and axial pressure gradient in addition to heat and mass transfer. Brownian motion and thermophoresis have been introduced through the Buongiorno model. The similarity solution was used to solve nonlinear ordinary differential equations. The RungeKutta-Fehlberg method is used to solve these equations with the related boundary conditions. The effects of pertinent parameters such as pressure gradient, thermal radiation, viscosity parameter, thermophoretic parameter, Brownian motion parameter, and Eckert number are investigated numerically. This study found that the Bejan number increases as the viscosity parameter increases and decreases as the other active parameters increase. As the radiation parameter, thermophoretic parameter, Brownian parameter, and Eckert number increase, the Nusselt number decreases. The total entropy generation rate is found to increase with the fluid viscosity rate, Grashof number, thermal Biot number, and variable pressure gradient. However, the Bejan number is found to decrease with these parameters, as well as the Prandtl number.
Rocznik
Strony
419--438
Opis fizyczny
Bibliogr. 31 poz., rys., wykr.
Twórcy
  • Faculty of Military Science, Stellenbosch University Private Bag X2, Saldanha 7395, South Africa
autor
  • Department of Information Technology, Fanshawe College London ON, Canada
  • Department of Mechanical Engineering, College of Engineering, Prince Mohammad Bin Fahd University Al Khobar 31952, Kingdom of Saudi Arabia
  • Faculty of Engineering, Stellenbosch University Private Bag X1, Matieland 7602, South Africa
Bibliografia
  • 1. Watanabe T., Toya Y., Nakamura I., Development of free surface flow between concentric cylinders with vertical axes, Journal of Physics: Conference Series, 14: 9–19, 2005, doi: 10.1088/1742-6596/14/1/002.
  • 2. Makinde O.D., Thermal analysis of a reactive generalized Couette flow of power law fluid between concentric cylindrical pipes, The European Physical Journal Plus, 129(2): 270 (9 pages), 2014, doi: 10.1140/epjp/i2014-14270-4.
  • 3. Lorenzini M., Dapra` I., Scarpri G., Heat transfer for a Giesekus fluid in a rotating concentric annulus, Applied Thermal Engineering, 122: 118–125, 2017, doi: 10.1016/j.appl thermaleng.2017.05.013.
  • 4. Coelho P.M., Pinho F.T., A generalized Brinkman number for non-Newtonian duct flows, Journal of Non-Newtonian Fluid Mechanics, 156(3): 202–206, 2009, doi: 10.1016/ j.jnnfm.2008.07.001.
  • 5. Bejan A., Second-law analysis in heat transfer and thermal design, Advance in Heat Transfer, 15: 1–58, 1982, doi: 10.1016/S0065-2717(08)70172-2.
  • 6. Makinde O.D., Eegunjobi A.S., Inherent irreversibility of mixed convection within concentric pipes in a porous medium with thermal radiation, Journal of Mathematical and Fundamental Sciences, 53(3): 395–414, 2021, doi: 10.5614/j.math.fund.sci.2021.53.3.5.
  • 7. Makinde O.D., Eegunjobi A.S., Entropy analysis of a variable viscosity MHD Couette flow between two concentric pipes with convective cooling, Engineering Transactions, 68(4): 317–334, 2020, doi: 10.24423/engtrans.1104.20200720.
  • 8. Monaledi R.L., Makinde O.D., Entropy generation analysis in a microchannel Poiseuille flows of nanofuid with nanoparticles injection and variable properties, Journal of Thermal Analysis and Calorimetry, 143: 1855–1865, 2021, doi: 10.1007/s10973-020-09919-x.
  • 9. Nayak M.K., Mabood F., Dogonchi A.S., Ramadan K.M., Tlili I., Khan W.A., Entropy optimized assisting and opposing nonlinear radiative flow of hybrid nanofluid, Waves in Random and Complex Media, 22 pages, 2022, doi: 10.1080/17455030.2022.2032474.
  • 10. Mabood F., Farooq W., Abbasi A., Entropy generation analysis in the electro-osmosismodulated peristaltic flow of Eyring-Powell fluid, Journal of Thermal Analysis and Calorimetry, 147(5): 3815–3830, 2022, doi: 10.1007/s10973-021-10736-z.
  • 11. Shaw S., Mabood F., Muhammad T., Nayak M.K., Alghamdi M., Numerical simulation for entropy optimized nonlinear radiative flow of GO-Al2O3 magneto nanomaterials with auto catalysis chemical reaction, Numerical Methods for Partial Differential Equations, 38(3): 329–358, 2022, doi: 10.1002/num.22623.
  • 12. Mabood F., Fatunmbi E.O., Benos L., Sarris I.E., Entropy generation in the magnetohydrodynamic Jeffrey nanofluid flow over a stretching sheet with wide range of engineering application parameters, International Journal of Applied and Computational Mathematics, 8(3): 98, 2022, doi: 10.1007/s40819-022-01301-9.
  • 13. Nayak M.K., Mabood F., Khan W.A., Makinde O.D., Cattaneo-Christov double diffusion on micropolar magneto cross nanofluids with entropy generation, Indian Journal Physics, 96(1): 193–208, 2022, doi: 10.1007/s12648-020-01973-3.
  • 14. Shaw S., Chamkha A.J., Wakif A., Makinde O.D., Nayak M.K., Effects of Wu’s slip and non-uniform source/sink on entropy optimized radiative magnetohydrodynamic up/down flow of nanofluids, Journal of Nanofluids, 11(3): 305–317, 2022, doi: 10.1166/jon. 2022.1840.
  • 15. Sathyanarayanan S.U.D, Mabood F., Jamshed W., Mishra S.R., Nisar K., Pattnaik P.K., Prakash M., Abdel-Aty A.H., Zakarya M., Irreversibility process characteristics of variant viscosity and conductivity on hybrid nanofluid flow through Poiseuille microchannel: A special case study, Case Studies in Thermal Engineering, 27: 101337, 2021, doi: 10.1016/j.csite.2021.101337.
  • 16. Nayak M.K., Mabood F., Tlili I., Dogonchi A.S., Khan W.A., Entropy optimization analysis on nonlinear thermal radiative electromagnetic Darcy-Forchheimer flow of SWCNT/MWCNT nanomaterials, Applied Nanoscience, 11(2): 399–418, 2021, doi: 10.1007/s13204-020-01611-8.
  • 17. Azam A., Mabood F., Xu T., Waly M., Tlili I., Entropy optimized radiative heat transportation in axisymmetric flow of Williamson nanofluid with activation energy, Results in Physics, 19: 103576, 2020, doi: 10.1016/j.rinp.2020.103576.
  • 18. Berrehal H., Sowmya G., Makinde O.D., Shape effect of nanoparticles on MHD nanofluid flow over a stretching sheet in the presence of heat source/sink with entropy generation, International Journal of Numerical Methods for Heat & Fluid Flow, 32(5): 1643–1663, 2022, doi: 10.1108/HFF-03-2021-0225.
  • 19. Nayak M.K., Shaw S., Khan M.I., Makinde O.D., Chu Y.M., Khan S.U., Interfacial layer and shape effects of modified Hamilton’s Crosser model in entropy optimized DarcyForchheimer flow, Alexandria Engineering Journal, 60(4): 4067–4083, 2021, doi: 10.1016/ j.aej.2021.02.010.
  • 20. Choi S.U.S., Eastman J.A., Enhancing thermal conductivity of fluids with nanoparticles, [in:] Developments and Applications of Non- Newtonian Flows, FED-V.231/MD, ASME, D.A. Siginer, H.P. Wang [Eds.], 66: 99–105, 1995.
  • 21. Khan W.A., Pop I., Boundary-layer flow of a nanofluid past a stretching sheet, International Journal of Heat and Mass Transfer, 53(11–12): 2477–2483, 2010, doi: 10.1016/ j.ijheatmasstransfer.2010.01.032.
  • 22. Shehzad S.A., Mabood F., Rauf A., Izadi M., Abbasi F.M., Rheological features of non-Newtonian nanofluids flows induced by stretchable rotating disk, Physica Scripta, 96(3): 035210, 2021, doi: 10.1088/1402-4896/abd652.
  • 23. Ferdows M., Shamshuddin M.D., Salawu S.O., Zaimi K., Numerical simulation for the steady nanofluid boundary layer flow over a moving plate with suction and heat generation, SN Applied Sciences, 3(2): 1–11, 2021, doi: 10.1007/s42452-021-04224-0.
  • 24. Mabood F., Muhammad T., Nayak M.K., Waqas H., Makinde O.D., EMHD flow of non-Newtonian nanofluids over thin needle with Robinson’s condition and Arrhenius preexponential factor law, Physica Scripta, 95(11): 115219, 2020, doi: 10.1088/1402-4896/ abc0c3.
  • 25. Khan W.A., Makinde O.D., Khan Z.H., Non-aligned MHD stagnation point flow of variable viscosity nanofluids past a stretching sheet with radiative heat, International Journal of Heat and Mass Transfer, 96: 525–534, 2016, doi: 10.1016/j.ijheatmasstransfer. 2016.01.052.
  • 26. Ali A.O., Khamis S.A., Seif F.S., Makinde O.D., Entropy analysis of the unsteady Darcian nanofluid flow in a cylindrical pipe with a porous wall, International Journal of Ambient Energy, 43(1): 7321–7329, 2022, doi: 10.1080/01430750.2022.2063382.
  • 27. Eegunjobi A.S., Makinde O.D., Entropy analysis in an unsteady MHD flow of a radiating fluid through a vertical channel filled with a porous medium, International Journal of Ambient Energy, 43(1): 6404–6416, 2022, doi: 10.1080/01430750.2021.2019112.
  • 28. Rikitu B.H., Makinde O.D., Enyadene L.G., Modeling heat transfer enhancement of Ferrofluid (Fe3O4–H2O) flow in a microchannel filled with a porous medium, Journal of Nanofluids, 10(1): 31–44, 2021, doi: 10.1166/jon.2021.1764.
  • 29. Abbasi A., Mabood F., Farooq W., Hussain Z., Non-orthogonal stagnation point flow of Maxwell nano-material over a stretching cylinder, International Communications in Heat and Mass Transfer, 120: 105043, 2021, doi: 10.1016/j.icheatmasstransfer.2020.105043.
  • 30. Chakraborty S., Ray S., Performance optimisation of laminar fully developed flow through square ducts with rounded corners, International Journal of Thermal Sciences, 50(12): 2522–2535, 2011, doi: 10.1016/j.ijthermalsci.2011.06.006.
  • 31. Lorenzini M., Suzzi N., The influence of geometry on the thermal performance of microchannels in laminar flow with viscous dissipation, Heat Transfer Engineering, 37(13/14): 1096–1104, 2016, doi: 10.1080/01457632.2015.1111100.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-33273a8c-c171-4745-b663-be4a528a893c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.