Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this study, based on two new local fractional integral operators involving generalized Mittag-Leffler kernel, Hermite-Hadamard inequality about these two integral operators for generalized h-preinvex functions is obtained. Subsequently, an integral identity related to these two local fractional integral operators is constructed to obtain some new Ostrowski-type local fractional integral inequalities for generalized h-preinvex functions. Finally, we propose three examples to illustrate the partial results and applications. Meanwhile, we also propose two midpoint-type inequalities involving generalized moments of continuous random variables to show the application of the results.
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. 20230128
Opis fizyczny
Bibliogr. 45 poz., rys.
Twórcy
autor
- School of Science, Shaoyang University, Shaoyang 422000, P. R. China
autor
- Department of Mathematics and Theories, Peng Cheng Laboratory, Shenzhen, Guangdong 518000, P. R. China
- School of Science, Shaoyang University, Shaoyang 422000, P. R. China
- Future Tech, South China University of Technology, Guangzhou 510640, China
Bibliografia
- [1] J. Hadamard, Etude sur les proprietes des fonctions entieres et en particulier daune fonction consideree par Riemann, J. Math. Pures. Appl. 58 (1893), 171–215.
- [2] C. Hermite, Sur deux limites daune integrale definie, Mathesis 3 (1883), 82.
- [3] A. Ostrowski, Über die Absolutabweichung einer differentiebaren funktion von ihren integralmittelwert, Comment. Math. Helv. 10 (1938), 226–227.
- [4] K. Mehrez and P. Agarwal, New Hermite-Hadamard-type integral inequalities for convex functions and their applications, J. Comput. Appl. Math. 350 (2019), 274–85.
- [5] H. Budak, M. A. Ali, and M. Tarhanaci, Some new quantum Hermite-Hadamard-like inequalities for coordinated convex functions, J. Optim. Theory Appl. 186 (2020), no. 3, 899–910.
- [6] M. A. Noor, K. I. Noor, and S. Rashid, Some new class of preinvex functions and inequalities, Math. 7 (2019), 29, DOI: https://doi.org/10.3390/math7010029.
- [7] J. G. Liao, S. H. Wu, and T. S. Du The Sugeno integral with respect to α-preinvex functions, Fuzzy Sets and Systems. 379 (2020), 102–114.
- [8] T. S. Du and T. C. Zhou, On the fractional double integral inclusion relations having exponential kernels via interval-valued co-ordinated convex mappings, Chaos Solitons and Fractals 156 (2022), 1–19.
- [9] T. S. Du, M. U. Awan, A. Kashuri, and S. S. Zhao, Some k -fractional extensions of the trapezium inequalities through generalized relative semi-(m,h) -preinvexity, Applicable Analysis 100 (2021), no. 3, 642–662.
- [10] S. K. Sahoo, M. Tariq, H. Ahmad, B. Kodamasingh, A. A. Shaikh, T. Botmart, Some novel fractional integral inequalities over a new class of generalized convex function. Fractal Fractional 6 (2022), no. 1, 42.
- [11] M. Tariq, H. Ahmad, C. Cesarano, H. Abu-Zinadah, A. E. Abouelregal, and S. Askar, Novel analysis of Hermite-Hadamard-type integral inequalities via generalized exponential type m-convex functions. Mathematics 10 (2022), no. 1, 31.
- [12] M. Tariq, H. Ahmad, H. Budak, S. K. Sahoo, T. Sitthiwirattham, and J. Reunsumrit, A comprehensive analysis of Hermite-Hadamard-type inequalities via generalized preinvex functions. Axioms. 10 (2021), no. 4, 328.
- [13] M. S. Iqbal, M. W. Yasin, N. Ahmed, A. Akgül, M. Rafiq, and A. Raza, Numerical simulations of nonlinear stochastic Newell-Whitehead-Segel equation and its measurable properties, J. Comput. Appl. Math. 418 (2023), 114618, DOI: https://doi.org/10.1016/j.cam.2022.114618.
- [14] M. Partohaghighi, A. Akgül, E. K. Akgül, N. Attia, M. De la Sen, and M. Bayram, Analysis of the fractional differential equations using two different methods, Symmetry 15 (2023), no. 1, 65, DOI: https://doi.org/10.3390/sym15010065.
- [15] N. Mehmood, A. Abbas, A. Akgül, T. Abdeljawad, and M. A. Alqudah, Existence and stability results for coupled system of fractional differential equations involving AB-Caputo derivative, Fractals 31 (2023), no. 02, 2340023, DOI: https://doi.org/10.1142/S0218348X23400236.
- [16] M. I. Asjad, W. A. Faridi, M. M. Al-Shomrani, and A. Yusuf, The generalization of Hermite-Hadamard-type inequality with exp-convexity involving non-singular fractional operator. AIMS Math. 7 (2022), no. 4, 7040–7055.
- [17] M. Tariq, H. Ahmad, S. K. Sahoo, A. Kashuri, T. A. Nofal, and C. H. Hsu, Inequalities of Simpson-Mercer-type including Atangana-Baleanu fractional operators and their applications, AIMS Math. 7 (2022), no. 8, 15159–15181, DOI: https://doi.org/10.3934/math.2022831.
- [18] M. Tariq, S. K. Sahoo, H. Ahmad, A. Iampan, and A. A. Shaikh, New Ostrowski-type inequalities pertaining to conformable fractional operators, J. Math. Comput. Sci. 29 (2023), no. 1, 28–39.
- [19] S. K. Sahoo, M. Tariq, H. Ahmad, A. A. Aly, B. F. Felemban, and P. Thounthong, Some Hermite-Hadamard-type fractional integral inequalities involving twice-differentiable mappings, Symmetry 13 (2021), no. 11, 2209.
- [20] B. Ahmad, A. Alsaedi, M. Kirane, and B. T. Torebek, Hermite-Hadamard, Hermite-Hadamard-Fejér, Dragomir-Agarwal and Pachpatte-type inequalities for convex functions via new fractional integrals. J. Comput. Appl. Math. 353 (2019), 120–129.
- [21] X. Wu, J. R. Wang, and J. Zhang, Hermite-Hadamard-type inequalities for convex functions via the fractional integrals with exponential kernel, Math. 7 (2019), 845, DOI: https://doi.org/10.3390/math7090845.
- [22] H. Budak, M. Z. Sarikaya, F. Usta, and H. Yildirim, Some Hermite-Hadamard and Ostrowski-type inequalities for fractional integral operators with exponential kernel, Acta et Commentationes Universitatis Tartuensis de Mathematica 23 (2019), no. 1, 25–36.
- [23] X. J. Yang, Advanced Local Fractional Calculus and Its Applications, World Science Publisher, NewYork, 2012.
- [24] X. J. Yang, D. Baleanu, and H. M. Srivastava, Local Fractional Integral Transforms and their Applications, Academic Press, New York, 2015.
- [25] X. J. Yang, J. A. Tenreiro, and D. Baleanu, On exact traveling-wave solutions for local fractional Korteweg-de Vries equation, Chaos 26 (2016), no. 8, 1–5, 084312.
- [26] X. J. Yang, F. Gao, and H. M. Srivastava, Exact travelling wave solutions for the local fractional two-dimensional Burgers-type equations, Comput. Math. Appl. 73 (2017), no. 2, 203–210.
- [27] X. J. Yang, F. Gao, and H. M. Srivastava, A new computational approach for solving nonlinear local fractional PDEs, J. Comput. Appl. Math. 339 (2018), 285–296.
- [28] X. J. Yang, F. Gao, and H. M. Srivastava, New rheological models within local fractional derivative, Romanian Reports Phys. 4 (2017), no. 4, 1–12.
- [29] J. G. Liu, X. J. Yang, Y. Y. Feng, and P. Cui, A new perspective to study the third order modified KdV equation on fractalset, Fractals 28 (2020), no. 6, 2050110, DOI: https://doi.org/10.1142/S0218348X20501108.
- [30] K. L. Wang, K. J. Wang, and C. H. He, Physical insight of local fractional calculus and its application to fractional Kdv-Burgers-Kuramoto equation, Fractals. 27 (2019), no. 7, 1950122.
- [31] S. Butt, S. Yousaf, M. Younas, H. Ahmad, and S. W. Yao, Fractal Hadamard-Mercer-Type inequalities with applications, Fractals 30 (2022), no. 02, 2240055.
- [32] W. B. Sun, Hermite-Hadamard-type local fractional integral inequalities for generalized s-preinvex functions and their generalization, Fractals 29 (2021), no. 4, 2150098, DOI: https://doi.org/10.1142/S0218348X21500985.
- [33] T. S. Du, H. Wang, M. A. Khan, and Y. Zhang, Certain integral inequalities considering generalized m-convexity on fractal sets and their applications, Fractals 27 (2019), no. 7, 1950117, DOI: https://doi.org/10.1142/S0218348X19501172.
- [34] Y. P. Yu, J. Liu, and T. S. Du, Certain error bounds on the parameterized integral inequalities in the sense of fractal sets, Chaos Solitons Fractals 161 (2022), 112328, DOI: https://doi.org/10.1016/j.chaos.2022.112328.
- [35] M. Z. Sarikaya and H. Budak, Generalized Ostrowski-type inequalities for local fractional integrals, Proc. Amer. Math. Soc. 145 (2017), no. 4, 1527–1538.
- [36] G. S. Chen, J. S. Liang, H. M. Srivastava, and C. Lv, Local fractional integral Hölder-type inequalities and some related results, Fractal Fract. 6 (2022), no. 4, 195.
- [37] Y. M. Chu, S. Rashid, T. Abdeljawad, A. Khalid, and H. Kalsoom, On new generalized unified bounds via generalized exponentially harmonically s -convex functions on fractal sets, Adv. Difference Equations 2021 (2021), no. 1, 1–33.
- [38] W. B. Sun, Some new inequalities for generalized h-convex functions involving local fractional integral operators with Mittag-Leffler kernel. Math. Meth. Appl. Sci. 44 (2021), 4985–4998.
- [39] W. B. Sun. Hermite-Hadamard-type local fractional integral inequalities with Mittag-Leffler kernel for generalized preinvex functions. Fractals 29 (2021), no. 8, 2150253, DOI: https://doi.org/10.1142/S0218348X21502534.
- [40] P. Xu, S. I. Butt, S. Yousaf, A. Aslam, and T. J. Zia, Generalized fractal Jensen-Mercer and Hermite-Mercer-type inequalities via h-convex functions involving Mittag-Leffler kernel, Alexandr. Eng. J. 61 (2022), no. 6, 4837–4846.
- [41] T. Weir and B. Mond, Pre-invex functions in multiple objective optimization, J. Math. Anal. Appl. 136 (1988), 29–38.
- [42] S. R. Mohan and S. K. Neogy, On invex sets and preinvex function, J. Math. Anal. Appl. 189 (1995), 901–908.
- [43] W. B. Sun, Some Hermite-Hadamard-type inequalities for generalized h-preinvex function via local fractional integrals and their applications. Adv. Difference Equations 2020 (2020), 426, DOI: https://doi.org/10.1186/s13662-020-02812-9.
- [44] M. A. Noor, Hermite-Hadamard integral inequalities for log-preinvex functions, J. Math. Anal. Approx. Theory 2007 (2007), no. 2, 126–131.
- [45] M. Z. Sarikaya, H. Bozkurt, N. Alp, On Hermite-Hadamard-type integral inequalities for preinvex and log-preinvex functions, arXiv:1203.4759v1[math.CA], 2012.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-33256915-2c2e-4dc9-b0eb-a3d66b7a0526
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.