PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Environmental mapping of Burkina Faso using TerraClimate data and satellite images by GMT and R scripts

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the climate and environmental datasets were processed by the scripts of Generic Mapping Tools (GMT) and R to evaluate changes in climate parameters, vegetation patters and land cover types in Burkina Faso. Located in the southern Sahel zone, Burkina Faso experiences one of the most extreme climatic hazards in sub-saharan Africa varying from the extreme floods in Volta River Basin, to desertification and recurrent droughts.. The data include the TerraClimate dataset and satellite images Landsat 8-9 Operational Land Imager (OLI) and Thermal Infrared (TIRS) C2 L1. The dynamics of target climate characteristics of Burkina Faso was visualised for 2013-2022 using remote sensing data. To evaluate the environmental dynamics the TerraClimate data were used for visualizing key climate parameter: extreme temperatures, precipitation, soil moisture, downward surface shortwave radiation, vapour pressure deficit and anomaly. The Palmer Drought Severity Index (PDSI) was modelled over the study area to estimate soil water balance related to the soil moisture conditions as a prerequisites for vegetation growth. The land cover types were mapped using the k-means clustering by R. Two vegetation indices were computed to evaluate the changes in vegetation patterns over recent decade. These included the Normalized Difference Vegetation Index (NDVI) and the Soil-Adjusted Vegetation Index (SAVI) The scripts used for cartographic workflow are presented and discussed. This study contributes to the environmental mapping of Burkina Faso with aim to highlight the links between the climate processes and vegetation dynamics in West Africa.
Rocznik
Strony
art. no. e45, 2023
Opis fizyczny
Bibliogr. 91 poz., rys., wykr.
Twórcy
  • Universität Salzburg, Salzburg, Austria
  • Université Libre de Bruxelles, Brussels, Belgium
Bibliografia
  • 1. Abatzoglou, J., Dobrowski, S., Parks, S. et al. (2018). TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data, 5, 170191. DOI: 10.1038/sdata.2017.191.
  • 2. Adjonou, K., Abotsi, K.E., Segla, K.N. et al. (2020). Vulnerability of African Rosewood (Pterocarpuserinaceus, Fabaceae) natural stands to climate change and implications for silviculture in West Africa. Heliyon, 6, e04031. DOI: 10.1016/j.heliyon.2020.e04031.
  • 3. Arumugam, P., Chemura, A., Aschenbrenner, P. et al. (2023). Climate change impacts and adaptation strategies: An assessment on sorghum for Burkina Faso. Eur. J. Agron., 142, 126655. DOI: 10.1016/j.eja.2022.126655.
  • 4. Ascott, M., Macdonald, D., Sandwidi, W. et al. (2022). Time of emergence of impacts of climate change on groundwater levels in sub-saharan Africa. J. Hydrol., 612, 128107. DOI: 10.1016/j.jhydrol. 2022.128107.
  • 5. Augusseau, X., Cuisance, D., Michel, J.F. et al. (2001). Modélisation de “paysage épidémiologiquement dangereux” par télédétection et SIG. L’Information Géographique, 65, 73–80. DOI: 10.3406/in-geo.2001.2738.
  • 6. Ayanlade, A., Oluwaranti, A., Ayanlade, O.S. et al. (2022). Extreme climate events in sub-saharan Africa: A call for improving agricultural technology transfer to enhance adaptive capacity. Clim. Serv., 27, 100311. DOI: 10.1016/j.cliser.2022.100311.
  • 7. Azibo, B.R., and Kimengsi, J.N. (2015). Building an Indigenous Agro-pastoral Adaptation Framework to Climate Change in sub-saharan Africa: Experiences from the North West Region of Cameroon. Procedia Environ. Sci., 29, 126–127. DOI: 10.1016/j.proenv.2015.07.214.
  • 8. Balima, L.H., Kouamé, F.N., Bayen, P. et al. (2021). Influence of climate and forest attributes on aboveground carbon storage in Burkina Faso, West Africa. Environ. Challen., 4, 100123. DOI: 10.1016/j.envc.2021.100123.
  • 9. Ballouche, A. (1998). Dynamique des paysages végétaux sahélo-soudaniens et pratiques agro-pastorales à l’holocène: exemples au Burkina Faso (Holocene dynamic of Sahelo-sudanian vegetation landscapes and agro-pastoral practices: examples from Burkina Faso). Bull. Assoc. Geogr. Fr., 75, 191–200. DOI: 10.3406/bagf.1998.2035.
  • 10. Bandre, E. (1993). La dynamique du couvert végétal dans la région de Gboué, province de la Kossi, Burkina Faso. Pays enclavés, 7, 27–46.
  • 11. Barro, A., Taonda, J.B., Manu, A. et al. (2005). Fight poverty by agricultural production optimization in Burkina Faso using GIS. In Proc. 2005 IEEE International Geoscience and Remote Sensing Symposium. IGARSS’05, 8, 5350–5353. DOI: 10.1109/IGARSS.2005.1525946.
  • 12. Belemtougri, A.P., Ducharne, A., Tazen, F. et al. (2021). Understanding key factors controlling the duration of river flow intermittency: Case of Burkina Faso in West Africa. J. Hydrol. Reg., 37, 100908. DOI: 10.1016/j.ejrh.2021.100908.
  • 13. Biasutti, M. (2019). Rainfall trends in the African Sahel: Characteristics, processes, and causes. WIREs Clim. Change, 10, e591. DOI: 10.1002/wcc.591.
  • 14. Bocksberger, G., Schnitzler, J., Chatelain, C. et al. (2016). Zizka, G. Climate and the distribution of grasses in West Africa. J. Veg. Sci., 27, 306–317. DOI: 10.1111/jvs.12360.
  • 15. Brons, J.E., Zaal, F., Ruben, R. et al. (2000). Climate Change, Agricultural Variability and Risk-coping Strategies. A farm and household level analysis in northern Burkina Faso. Technical report, CERES/WUR/RIVM.
  • 16. Bunclark, L., Gowing, J., Oughton, E. et al. (2018). Understanding farmers’ decisions on adaptation to climate change: Exploring adoption of water harvesting technologies in Burkina Faso. Glob. Environ. Change, 48, 243–254. DOI: 10.1016/j.gloenvcha.2017.12.004.
  • 17. Calzadilla, A., Zhu, T., Rehdanz, K. et al. (2013). Ringler, C. Economywide impacts of climate change on agriculture in sub-saharan Africa. Ecol. Econ., 93, 150–165. DOI: 10.1016/j.ecolecon.2013.05.006.
  • 18. Capozzi, F., Di Palma, A., De Paola, F. et al. (2018). Assessing desertification in sub-saharan peri-urban areas: Case study applications in Burkina Faso and Senegal. J. Geochem. Explor., 190, 281–291. DOI: 10.101 935 6/j.gexplo.2018.03.012.936.
  • 19. Cecchi, P., Meunier-Nikiema, A., Moiroux, N. et al. (2008). Towards an atlas of lakes and reservoirs in Burkina Faso.
  • 20. Da, S.S. (2010). Spatial patterns of West-African plant diversity along a climatic gradient from coast to Sahel. PhD thesis. Universitäts-und Landesbibliothek Bonn.
  • 21. Daniel, C.C., Thomas, G., Heidi, W. et al. (2013). Farming in the West African Sudan Savanna: Insights in the context of climate change. Afr. J. Agric. Res., 8, 4693–4705. DOI: 10.5897/AJAR2013.7153.
  • 22. De Longueville, F., Hountondji, Y.C., Kindo, I. et al. (2016). Long-term analysis of rainfall and temperature data in Burkina Faso (1950–2013). Int. J. Climatol., 36, 4393–4405. DOI: 10.1002/joc.4640.
  • 23. Devineau, J.L., Fournier, A., and Nignan, S. (2010). Savanna fire regimes assessment with MODIS fire data: Their relationship to land cover and plant species distribution in western Burkina Faso (West Africa). J. Arid Environ., 74, 1092–1101. DOI: 10.1016/j.jaridenv.20830 10.03.009.
  • 24. Dimobe, K., Ouédraogo, A., Soma, S. et al. (2015). Identification of driving factors of land degradation and deforestation in the Wildlife Reserve of Bontioli (Burkina Faso, West Africa). Glob. Ecol. Conserv., 4, 559–571. DOI: 10.1016/j.gecco.2015.10.006.
  • 25. Dimobe, K., Kouakou, J.L.N., Tondoh, J.E. et al. (2018). Predicting the Potential Impact of Climate Change on Carbon Stock in Semi-Arid West African Savannas. Land, 7. DOI: 10.3390/land7040124.
  • 26. Dimobe, K., Ouédraogo, A., Ouédraogo, K. et al. (2020). Climate change reduces the distribution area of the shea tree (Vitellaria paradoxa C.F. Gaertn.) in Burkina Faso. J. Arid Environ., 181, 104237. DOI: 10.1016/j.jaridenv.2020.104237.
  • 27. Dimobe, K., Gessner, U., Ouédraogo, K. et al. (2022a). Trends and drivers of land use/cover change in W National park in Burkina Faso. Environ. Dev., 44, 100768. DOI: 10.1016/j.envdev.2022.100768.
  • 28. Dimobe, K., Ouédraogo, K., Annighöfer, P. et al. (2022b). Climate change aggravates anthropogenic threats of the endangered savanna tree Pterocarpus erinaceus (Fabaceae) in Burkina Faso. J. Nat. Conserv., 70, 126299. DOI: 10.1016/j.jnc.2022.126299.
  • 29. Emediegwu, L.E., Wossink, A., and Hall, A. (2022). The impacts of climate change on agriculture in sub-saharan Africa: A spatial panel data approach. World Dev., 158, 105967. DOI: 10.1016/j.worlddev. 2022.105967.
  • 30. Etongo, D., Djenontin, I.N.S., Kanninen, M. et al. (2015). Land tenure, asset heterogeneity and deforestation in Southern Burkina Faso. For. Policy Econ., 61, 51–58. DOI: 10.1016/j.forpol.2015.08.006.
  • 31. Forkuor, G., Dimobe, K., Serme, I., et al. (2018). Landsat-8 vs. Sentinel-2: examining the added value of sentinel-2’s red-edge bands to land-use and land-cover mapping in Burkina Faso. GIsci. Remote Sens., 55, 331–354. DOI: 10.1080/15481603.2017.1370169.
  • 32. Gaetani, M., Janicot, S., Vrac, M. et al. (2020). Robust assessment of the time of emergence of precipitation change in West Africa. Sci. Rep., 10, 7670. DOI: 10.1038/s41598-020-63782-2.
  • 33. Gaisberger, H., Kindt, R., Loo, J. et al. (2017). Spatially explicit multi-threat assessment of food tree species in Burkina Faso: A fine-scale approach. PLoS One, 12, e0184457. DOI: 10.1371/948 journal.pone.0184457.
  • 34. Gbode, I.E., Diro, G.T., Intsiful, J.D. et al. (2022). Current Conditions and Projected Changes in Crop Water Demand, Irrigation Requirement, and Water Availability over West Africa. Atmosphere, 13. DOI: 10.3390/atmos13071155.
  • 35. GEBCO (2020). GEBCO Compilation Group. GEBCO 2020 Grid. DOI: 10.5285/a29c5465-b138-234d-1075e053-6c86abc040b9.
  • 36. Hannah, L., Midgley, G., Lovejoy, T. et al. (2002). Conservation of biodiversity in a changing climate. Conservation Biology, 16, 264–268. DOI: 10.1046/j.1523-1739.2002.00465.x.
  • 37. Idrissou, M., Diekkrüger, B., Tischbein, B. et al. (2022). Modeling the Impact of Climate and Land Use/Land Cover Change on Water Availability in an Inland Valley Catchment in Burkina Faso. Hydro., 9. DOI: 10.3390/hydrology9010012.
  • 38. Kadeba, A., Nacoulma, B.M.I., Ouedraogo, A. et al. (2015). Land cover change and plants diversity in the Sahel: A case study from northern Burkina Faso. Ann. For. Res., 58. DOI: 10.15287/afr.2015.350.
  • 39. Kanmegne Tamga, D., Latifi, H., Ullmann, T. et al. (2023). Estimation of Aboveground Biomass in Agroforestry Systems over Three Climatic Regions in West Africa Using Sentinel-1, Sentinel-2, ALOS, and GEDI Data. Sensors, 23. DOI: 10.3390/s23010349.
  • 40. Kasei, R., Diekkrüger, B., and Leemhuis, C. (2010). Drought frequency in the Volta Basin of West Africa. Sustain. Sci., 5, 89. DOI: 10.1007/s11625-009-0101-5.
  • 41. Landmann, T., Machwitz, M., Le, Q.B. et al. (2008). A Land Cover Change Synthesis Study for the GLOWA Volta Basin in West Africa using Time Trajectory Satellite Observations and Cellular Automata Models. In Proc. IGARSS 2008 – IEEE Int. Geosci. Remote Sens., 3, 640–643. DOI: 10.1109/IGARSS.2008.4779429.
  • 42. Lemenkova, P., and Debeir, O. (2022a). Seismotectonics of Shallow-Focus Earthquakes in Venezuela with Links to Gravity Anomalies and Geologic Heterogeneity Mapped by a GMT Scripting Language. Sustainability, 14. DOI: 10.3390/su142315966.
  • 43. Lemenkova, P., and Debeir, O. (2022b). Satellite Altimetry and Gravimetry Data for Mapping Marine Geodetic and Geophysical Setting of the Seychelles and the Somali Sea, Indian Ocean. J. Appl. Eng. Sci., 12, 191–202. DOI: 10.2478/jaes-2022-0026.
  • 44. Lemenkova, P., and Debeir, O. (2022c). Satellite Image Processing by Python and R Using Landsat 9 OLI/TIRS and SRTM DEM Data on Côte d’Ivoire, West Africa. J. Imaging, 8. DOI: 10.3390/jimaging8120317.
  • 45. Lemenkova, P., and Debeir, O. (2022d). R Libraries for Remote Sensing Data Classification by K-Means Clustering and NDVI Computation in Congo River Basin, DRC. Appl. Sci., 12. DOI: 10.3390/app122412554.
  • 46. Lemenkova, P., and Debeir, O. (2023). Quantitative Morphometric 3D Terrain Analysis of Japan Using Scripts of GMT and R. Land, 12. DOI: 10.3390/land12010261.
  • 47. Machwitz, M., Landmann, T., Conrad, C. et al. (2008). Land Cover Analysis on Sub-Continental Scale: FAO LCCS Standard with 250 Meter MODIS Satellite Observations in West Africa. In Proceedings of the IGARSS 2008 – 2008 IEEE Int. Geosci. Remote. Sens. Symposium, 5, 49–52. DOI: 10.1109/IGARSS.2008.4780024.
  • 48. Martino, G.D., Iodice, A., Riccio, D. et al. (2011). Use of High Resolution Satellite Images for the Calibration of Hydro-geological Models in Semi-Arid Regions: A Case Study. In Proc. 2011 IEEE Global Humanitarian Technology Conference, 171–175. DOI: 10.1109/GHTC.2011.80.
  • 49. Mather, J.R. (1987). Vegetation and climate. Climatology, Springer US: Boston, MA. 902–910. DOI: 10.1007/0-387-30749-4_189.
  • 50. Miura, Y., Eriksson, L.E.B., Ostwald, M. et al. (2019). Soil Moisture Monitoring of Agricultural Fields in Burkina Faso Using Dual Polarized Sentinel-1a Data. In Proc. IGARSS 2019 – 2019 IEEE Int. Geosci. Remote. Sens. Symposium, 7045–7048. DOI: 10.1109/IGARSS.2019.889 8897.
  • 51. Moser, L., Voigt, S., Schoepfer, E. et al. (2014). Multitemporal Wetland Monitoring in sub-saharan West-Africa Using Medium Resolution Optical Satellite Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 7, 3402–3415. DOI: 10.1109/JSTARS.2014.2336875.
  • 52. Musyimi, Z., Said, M.Y., Zida, D. et al. (2017). Aynekulu, E. Evaluating fire severity in Sudanian ecosystems of Burkina Faso using Landsat 8 satellite images. J. Arid Environ., 139, 95–109. DOI: 10.1016/j.jaridenv.2016.11.005.
  • 53. Nebie, O. (1993). Les problèmes d’aménagement et de gestion des terroirs villageois dans le Sahel burkinabé – Exemples de Koria, Seytenga, Titabé, Boundoré (Province du Séno). Pays enclavés, 7, 61–83. Included in a thematic issue: Aspects des milieux naturels du Burkina Faso.
  • 54. Offerle, B., Jonsson, P., Eliasson, I. et al. (2005). Urban modification of the surface energy balance in the West African Sahel: Ouagadougou, Burkina Faso. J. Clim., 18, 3983–3995. DOI: 10.1175/JCLI3520.1.
  • 55. Ofori-Sarpong, E. (1987). Hargreaves’ climatic classification and crop zonation in Burkina Faso*. J. Arid Environ., 12, 179–185. DOI: 10.1016/S0140-1963(18)31189-3.
  • 56. Oguntunde, P.G., Friesen, J., van de Giesen, N. et al. (2006). Hydroclimatology of the Volta River Basin in West Africa: Trends and variability from 1901 to 2002. Phys. Chem. Earth, Parts A/B/C, 31, 1180–1188. DOI: 10.1016/j.pce.2006.02.062.1052.
  • 57. Okafor, G.C., Larbi, I., Chukwuma, E.C. et al. (2021). Local climate change signals and changes in climate extremes in a typical Sahel catchment: The case of Dano catchment, Burkina Faso. Environ. Challeng., 5, 100285. DOI: 10.1016/j.envc.2021.100285.
  • 58. Olsson, L. (1993). Desertification in Africa – a critique and an alternative approach. GeoJournal, 31, 23–31. DOI: 10.1007/BF00815899.
  • 59. Op de Hipt, F., Diekkrüger, B., Steup, G. et al. (2018). Modeling the impact of climate change on water resources and soil erosion in a tropical catchment in Burkina Faso, West Africa. CATENA, 163, 63–77. DOI: 10.1016/j.catena.2017.11.023.
  • 60. Op de Hipt, F., Diekkrüger, B., Steup, G. et al. (2019). Modeling the effect of land use and climate change on water resources and soil erosion in a tropical West African catchment (Dano, Burkina Faso) using SHETRAN. Sci. Total Environ., 653, 431–445. DOI: 10.1016/j.scitotenv.2018.10.351.
  • 61. Ouedraogo, B.I., Tigabu, M., Savadogo, P. et al. (2010). Land cover change and its relation with population dynamics in Burkina Faso, West Africa. Land Degrad. Dev., 21, 453–462. DOI: 10.1002/ldr.981.
  • 62. Ouedraogo, B.I., Levermore, G.J., and Parkinson, J.B. (2012). Future energy demand for public buildings in the context of climate change for Burkina Faso. Build. Environ., 49, 270–282. DOI: 10.1016/j.buildenv.2011.10.003.
  • 63. Ouédraogo, R.A., Kambiré, F. C., Kestemont, M.-P. et al. (2019). Caractériser la diversité des exploitations maraîchères de la région de Bobo-Dioulasso au Burkina Faso pour faciliter leur transition agroécologique. Cah. Agric., 28, 20. DOI: 10.1051/cagri/2019021.
  • 64. R Core Team (2022). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL: https://www.R-project.org/.
  • 65. Rasmussen, K., Fog, B., and Madsen, J.E. (2001). Desertification in reverse? Observations from northern Burkina Faso. Glob. Environ. Change, 11, 271–282. DOI: 10.1016/S0959- 3780(01)00005-X.
  • 66. Reij, C., Tappan, G., and Belemvire, A. (2005). Changing land management practices and vegetation on the Central Plateau of Burkina Faso (1968–2002). J. Arid Environ., 63, 642–659. DOI: 10.1016/j.jaridenv.2005.03.010.
  • 67. Richards, J.A. (2013). Remote Sensing Digital Image Analysis. An Introduction. Springer: Dordrecht, 834 Netherlands. DOI: 10.1007/978-3-642-30062-2.
  • 68. Rigolot, C., de Voil, P., Douxchamps, S. et al. (2017). Interactions between intervention packages, climatic risk, climate change and food security in mixed crop–livestock systems in Burkina Faso. Agric. Syst., 151, 217–224. DOI: 10.1016/j.agsy.2015.12.017.
  • 69. Rochette, R.M. (1989). Le Sahel en lutte contre la désertification: leçons d’expériences.
  • 70. Salter, P.J., and Goode, J.E. (1967). Crop responses to water at different stages of growth responses to water at different stages of growth.
  • 71. Sanou, D.C. (1993). Ruissellement et érosion sur petits bassins versants: le cas de Imiga/Tibin. Pays enclavés, 7, 85–114.
  • 72. Sawadogo, B. (2022). Drought Impacts on the Crop Sector and Adaptation Options in Burkina Faso: Agender-Focused Computable General Equilibrium Analysis. Sustainability, 14. DOI: 10.3390/su142315637.
  • 73. Séogo, W., and Zahonogo, P. (2023). Do land property rights matter for stimulating agricultural productivity? Empirical evidence from Burkina Faso. Land Use Policy, 125, 106475. DOI: 10.1016/j.landusepol.2022.106475.
  • 74. Sorgho, R., Jungmann, M., Souares, A. et al. (2021). Climate Change, Health Risks, and Vulnerabilities in Burkina Faso: A Qualitative Study on the Perceptions of National Policymakers. Int. J. Environ. Res. Public Health, 18. DOI: 10.3390/ijerph18094972.
  • 75. Soumaré, M., Havard, M., and Bachelier, B. (2021). Cotton in West and Central Africa: from the agricultural revolution to the agro-ecological transition. Cah. Agric., 30, 5. DOI: 10.1051/cagri/2020044.
  • 76. Tarchiani, V., Coulibaly, H., Baki, G. et al. (2021). Access, Uptake, Use and Impacts of Agrometeorological Services in Sahelian Rural Areas: The Case of Burkina Faso. Agronomy, 11. DOI: 10.3390/agronomy11122431.
  • 77. USGS (2015). Landsat – Earth observation satellites. Technical report, USGS, U.S.. DOI: 10.3133/fs20153081.
  • 78. USGS (2022). Landsat 9 Data Users Handbook. online. 1079 EROS Sioux Falls, South Dakota, U.S. LSDS-2082 Version 1.0.
  • 79. Vall, E., Marre-Cast, L., and Kamgang, H. J. (2017). Chemins d’intensification et durabilité des exploitations de polyculture-élevage en Afrique subsaharienne: contribution de l’association agriculture-élevage. Cah. Agric., 26, 25006. DOI: 10.1051/cagri/201701-990-1.
  • 80. Vanhuysse, S., Grippa, T., Lennert, M. et al. (2017). Contribution of nDSM derived from VHR stereo imagery to urban land-cover mapping in sub-saharan Africa. In Proc. 2017 Joint Urban Remote Sensing Event (JURSE), 1–4. DOI: 10.1109/ JURSE.2017.7924570.
  • 81. Van Teeffelen, P., de Jong, S., and van den Berg, L. (2001). Urban monitoring: new possibilities of combining high spatial resolution IKONOS images with contextual image analysis techniques. In Proc. IEEE/ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas (Cat. No.01EX482), 265–269. DOI: 10.1109/DFUA.2001.985893.
  • 82. Wagner, W., and Scipal, K. (2000). Large-scale soil moisture mapping in western Africa using the ERS scatterometer. IEEE Trans. Geosci. Remote Sens., 38, 1777–1782. DOI: 10.1109/36.851761.
  • 83. Waha, K., Müller, C., Bondeau, A. et al. (2013). Adaptation to climate change through the choice of cropping system and sowing date in sub-saharan Africa. Glob. Environ. Change, 23, 130–143. DOI: 10.1016/j.918 gloenvcha.2012.11.001.
  • 84. Waongo, M., Laux, P., and Kunstmann, H. (2015). Adaptation to climate change: The impacts of optimized planting dates on attainable maize yields under rainfed conditions in Burkina Faso. Agric. For. Meteorol., 205, 23–39. DOI: 10.1016/j.agrformet.2015.02.006.
  • 85. Webber, H., Gaiser, T., and Ewert, F. (2014). What role can crop models play in supporting climate change adaptation decisions to enhance food security in sub-saharan Africa? Agric. Syst., 127, 161–177. DOI: 10.1016/j.agsy.2013.12.006.
  • 86. Wessel, P., and Smith, W.H.F. (1991). Free software helps map and display data. Eos Trans. AGU, 72(41), 441–446. DOI: 10.1029/90EO00319.
  • 87. Wessel, P., Luis, J.F., Uieda, L. et al. (2019). The Generic Mapping Tools version 6. Geochem. Geophys. Geosys., 20, 5556–5564. DOI: 10.1029/2019GC008515.
  • 88. Wilmet, J. (1986). Analyse géographique et télédétection spatiale à haute résolution. Bulletins de l’Académie Royale de Belgique, 72, 381–392. DOI: 10.3406/barb.1986.61410.
  • 89. Zoungrana, B.J.B., Conrad, C., Amekudzi, L.K. et al. (2015). Multi-Temporal Landsat Images and Ancillary Data for Land Use/Cover Change (LULCC) Detection in the Southwest of Burkina Faso, West Africa. Remote Sens., 7, 12076–12102. DOI: 10.3390/rs70912076.
  • 90. Zoungrana, B.J.B., Conrad, C., Thiel, M. et al. (2018). MODIS NDVI trends and fractional land cover change for improved assessments of vegetation degradation in Burkina Faso, West Africa. J. Arid Environ., 153, 66–75. DOI: 10.1016/j. Jaridenv.2018.01.005.
  • 91. Zougmoré, R.B., Partey, S.T., Ouédraogo, M. et al. (2018). Facing climate variability in sub-saharan Africa: analysis of climate-smart agriculture opportunities to manage climate-related risks. Cah. Agric., 27, 34001. DOI: 10.1051/cagri/2018019.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-33193b1c-0e9b-4e54-ac14-023d699ee1d1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.