PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Predicting and minimizing the blasting cost in limestone mines using a combination of gene expression programming and particle swarm optimization

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Blasting cost prediction and optimization is of great importance and significance to achieve optimal fragmentation through controlling the adverse consequences of the blasting process. By gathering explosive data from six limestone mines in Iran, the present study aimed to develop a model to predict blasting cost, by gene expression programming method. The model presented a higher correlation coefficient (0.933) and a lower root mean square error (1088) comparing to the linear and nonlinear multivariate regression models. Based on the sensitivity analysis, spacing and ANFO value had the most and least impact on blasting cost, respectively. In addition to achieving blasting cost equation, the constraints such as frag-mentation, fly rock, and back break were considered and analyzed by the gene expression programming method for blasting cost optimization. The results showed that the ANFO value was 9634 kg, hole dia-meter 76 mm, hole number 398, hole length 8.8 m, burden 2.8 m, spacing 3.4 m, hardness 3 Mhos, and uniaxial compressive strength 530 kg/cm2 as the blast design parameters, and blasting cost was obtainedas 6072 Rials/ton, by taking into account all the constraints. Compared to the lowest blasting cost among the 146-research data (7157 Rials/ton), this cost led to a 15.2% reduction in the blasting cost and optimal control of the adverse consequences of the blasting process.
Rocznik
Strony
835--850
Opis fizyczny
Bibliogr. 42 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Mining Engineering, Faculty of Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
  • Department of Mining Engineering, Faculty of Engineering, University of Kashan, Kashan, Iran
  • Department of Mining Engineering, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
  • Department of Mining Engineering, Faculty of Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
Bibliografia
  • [1] Abad S.V.A.N.K., Yilmaz M., Armaghani D.J., Tugrul A., 2016. Prediction of the durability of limestone aggregates using computational techniques. Neural. Comput. Appl. 29, 2, 423-433.
  • [2] Adebayo B., Mutandwa B., 2015. Correlation of blast-hole deviation and area of block with fragment size and fragmentation cost. Int. Res. J. Eng. Tech. 2, 7, 402-406.
  • [3] Afum B., Temeng V., 2015. Reducing Drill and Blast Cost through Blast Optimisation – A Case Study. Ghana. Min. J. 15, 2, 50-57.
  • [4] Armaghani D.J., Faradonbeh R.S., Momeni E., Fahimifar A., Tahir M.M., 2017a. Performance prediction of tunnel boring machine through developing a gene expression programming equation. Eng. Comput. 34, 1, 129-141.
  • [5] Armaghani D.J., Mohamad E.T., Narayanasamy M.S., Narita N., Yagiz S., 2016. Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition. Tunn. Undergr. Space. Technol. 63, 29-43.
  • [6] Armaghani D.J., Raja R.S.N.S.B., Faizi K., Rashid A.S.A., 2017b. Developing a hybrid PSO-ANN model for estimating the ultimate bearing capacity of rock-socketed piles. Neural. Comput. Appl.28, 2, 391-405.
  • [7] Bakhshandeh Amnieh H., Hakimiyan Bidgoli M., Mokhtari H., Aghajani Bazzazi A., 2019. Application of simulated annealing for optimization of blasting costs due to air overpressure constraints in open-pit mines. J. Min. Env. 10, 4, 903-916.
  • [8] Brownlee J., 2011. Clever algorithms: nature-inspired programming recipes. Melbourne, Australia, Jason Brownlee.
  • [9] Duan J., Asteris P.G., Nguyen H., Bui X.N., Moayedi H., 2020. A novel artificial intelligence technique to predict compressive strength of recycled aggregate concrete using ICA-XGBoost model. Eng. Comput. doi.org/10.1007/s00366-020-01003-0.
  • [10] Enayatollahi I., Bazzazi A.A., Asadi A., 2014. Comparison between neural networks and multiple regression analysis to predict rock fragmentation in open-pit mines. Rock. Mech. Rock. Eng. 47, 2, 799-807.
  • [11] Esmaeili M., Osanloo M., Rashidinejad F., Bazzazi A.A., Taji M. 2014. Multiple regression, ANN and ANFIS models for prediction of backbreak in the open pit blasting. Eng. Comput. 30, 4, 549-558.
  • [12] Faradonbeh R.S., Armaghani D.J., Amnieh H.B., Mohamad E.T., 2016a. Prediction and minimization of blast-induced flyrock using gene expression programming and firefly algorithm. Neural. Comput. Appl. 29, 6, 269-281.
  • [13] Faradonbeh R.S., Armaghani D.J., Majid M.A., Tahir M.M., Murlidhar B.R., Monjezi M., Wong H., 2016b. Prediction of ground vibration due to quarry blasting based on gene expression programming: a new model for peak particle velocity prediction. Int. J. Environ. Sci. Technol.13, 6, 1453-1464.
  • [14] Faradonbeh R.S., Armaghani D.J., Monjezi M., 2016c. Development of a new model for predicting flyrock distance in quarry blasting: a genetic programming technique. Bull. Eng. Geol. Environ.75, 3, 993-1006.
  • [15] Faradonbeh R.S., Armaghani D.J., Monjezi M., Mohamad E.T., 2016d. Genetic programming and gene expression programming for flyrock assessment due to mine blasting. Int. J. Rock Mech. Min. Sci. 88, 254-264.
  • [16] Faradonbeh R.S., Monjezi M., 2017. Prediction and minimization of blast-induced ground vibration using two robust meta-heuristic algorithms. Eng. Comput. 33, 4, 835-851.
  • [17] Ferreira C., 2001. Gene expression programming: a new adaptive algorithm for solving problems. Complex. System.13, 2, 87-129.
  • [18] Ferreira C., 2006. Gene expression programming: mathematical modeling by an artificial intelligence,2nd. Germany, Springer.
  • [19] Ghanizadeh Zarghami A., Shahriar K., Goshtasbi K., Akbari A., 2018. A model to calculate blasting costs using hole diameter, uniaxial compressive strength, and joint set orientation. J. S. Afr. I. Min. Metall.118, 8, 869-877.
  • [20] Güllü H., 2012. Prediction of peak ground acceleration by genetic expression programming and regression: a comparison using likelihood-based measure. Eng Geol. 141, 92-113.
  • [21] Hajihassani M., Armaghani D.J., Kalatehjari R., 2017. Applications of Particle Swarm Optimization in Geotechnical Engineering: A Comprehensive Review. Geotech. Geol. Eng. 36, 2, 705-722.
  • [22] Hasanipanah M., Abdullah S.S., Asteris P.G., Armaghani D.J., 2019. A Gene Expression Programming Model for Predict-ing Tunnel Convergence. Appl. Sci. 9, 21, 4650.
  • [23] Hasanipanah M., Armaghani D.J., Amnieh H.B., Majid M.A., Tahir M.M., 2016a. Application of PSO to develop a powerful equation for prediction of flyrock due to blasting. Neural. Comput. Appl. 28, 1, 1043-1050.
  • [24] Hasanipanah M., Noorian-Bidgoli M., Armaghani D.J., Khamesi H.,2016b. Feasibility of PSO-ANN model for predicting surface settlement caused by tunneling. Eng. Comput. 34, 4, 705-715.
  • [25] Jakubowski J., Stypulkowski J., Bernardeau F., 2017. Multivariate linear regression and CART regression analysis of TBM performance at Abu Hamour phase-I tunnel. Arch. Mine. Sci.62, 4, 825-841.
  • [26] Jakubowski J., Tajduś A., 2014. Predictive regression models of monthly seismic energy emissions induced by longwall mining. Arch. Mine. Sci.59, 3, 705-720.
  • [27] Jiang M., Luo Y.P., Yang S.Y., 2007. Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm. Information Processing Letters. 102, 1, 8-16.
  • [28] Kanchibotla S.S., 2003. Optimum blasting? Is it minimum cost per broken rock or maximum value per broken rock?Fragblast. 7, 1, 35-48.
  • [29] Kennedy J., Eberhart R.C., Shi Y., 2001. chapter seven - The Particle Swarm. In J. Kennedy, R.C. Eberhart, & Y. Shi (Eds.), Swarm Intelligence (pp. 287-325), San Francisco, Morgan Kaufmann.
  • [30] Keshavarz A., Mehramiri M., 2015. New Gene Expression Programming models for normalized shear modulus and damping ratio of sands. Eng. Appl. Artif. Intel. 45, 464-472.
  • [31] Khandelwal M., Armaghani D.J., Faradonbeh R.S., Ranjith P., Ghoraba S., 2016. A new model based on gene expression programming to estimate air flow in a single rock joint. Environ. Earth. Sci. 75, 9, 1-13.
  • [32] Majdi A., Rezaei M., 2013. Prediction of unconfined compressive strength of rock surrounding a roadway using artificial neural network. Neural. Comput. Appl. 23, 2, 381-389.
  • [33] Rajpot M., 2009. The effect of fragmentation specification on blasting cost. Queen’s university Kingston, Ontario, Canada.
  • [34] Saltelli A., Ratto M., Andres T., Campolongo F., Cariboni J., Gatelli D., Saisana M., Tarantola S., 2008. Global sensitivity analysis: the primer, John Wiley & Sons.
  • [35] Sebastian H., Wenger R., Renner T., 1985. Correlation of minimum miscibility pressure for impure CO2 streams. J. Petrol. Technol. 37, 11, 2076-2082.
  • [36] Sharma L., Singh R., Umrao R., Sharma K., Singh T., 2017. Evaluating the modulus of elasticity of soil using soft computing system. Eng. Comput. 33, 3, 497-507.
  • [37] Shi Y., Eberhart R.C., 1998. Parameter selection in particle swarm optimization. In International conference on evolutionary programming, 591-600, Springer.
  • [38] Singh T., Singh V., 2005. An intelligent approach to prediction and control ground vibration in mines. Geotech. Geol. Eng. 23, 3, 249-262.
  • [39] Singh T., Verma A., 2010. Sensitivity of total charge and maximum charge per delay on ground vibration. Geomat. Nat. Haz. Risk.1, 3, 259-272.
  • [40] Steeb W.-H., 2014. The nonlinear workbook: Chaos, fractals, cellular automata, genetic algorithms, gene expression programming, support vector machine, wavelets, hidden Markov models, fuzzy logic with C++. Singapore, World Scientific Publishing Company.
  • [41] Teodorescu L., Sherwood D., 2008. High energy physics event selection with gene expression programming. Comput. Phys. Commun. 178, 6, 409-419.
  • [42] Tian H., Shu J., Han L., 2019. The effect of ICA and PSO on ANN results in approximating elasticity modulus of rock material. Eng. Comput. 35, 1, 305-314.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3318ae0e-1ae5-4364-8def-896b1054b321
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.