Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Three-dimensional (3D) locally resonant phononic crystals (LRPCs) are studied with the aim of optimising the sub-wavelength band gaps of such composites. By analysing their effective acoustic properties, it has been found that the effective acoustic speed of the composite will drop to zero when local resonance arise, and will increase monotonically when Bragg scattering effects occur. Moreover, if the matrix is a low-shear-speed medium, local resonators can significantly reduce the effective acoustic speed of the composite and, therefore, lower the frequency where Bragg scattering effects occur. Hence, a specific LRPC with alternating elastic and fluid matrices is proposed, whose resonance and Bragg gaps are already close in frequency. The fluid matrix behaves as a wave filter, which prevents the shear waves from propagating in the composite. By using the layer-multiple-scattering theory, the coupling behaviour of local resonance and Bragg scattering band gaps has been investigated. Both gaps are enhanced when they move closer to each other. Finally, a gap-coupled case is obtained that displays a broad sub-wavelength band gap. Such proposal excels at the application of underwater acoustic materials since the arrangement of structure can be handily adjusted for tuning the frequency of coupled gap.
Wydawca
Czasopismo
Rocznik
Tom
Strony
725--733
Opis fizyczny
Bibliogr. 21 poz., rys., wykr.
Twórcy
autor
- Department of Machinery and Electrical Engineering, Army Logistics University of PLA, 401311, Chongqing, China
autor
- College of Aerospace Science and Engineering, National University of Defense Technology, 410073, Changsha, China
autor
- Department of Machinery and Electrical Engineering, Army Logistics University of PLA, 401311, Chongqing, China
autor
- Department of Machinery and Electrical Engineering, Army Logistics University of PLA, 401311, Chongqing, China
autor
- Department of Military Engineering Management, Army Logistics University of PLA, 401311, Chongqing, China
autor
- Department of Machinery and Electrical Engineering, Army Logistics University of PLA, 401311, Chongqing, China
Bibliografia
- 1. Ao X., Chan C. (2009), Complex band structures and effective medium descriptions of periodic acoustic composite systems, Physical Review B, 80, 235118.
- 2. Elford D., Chalmers L., Kusmartsev F., Swallowe G. (2011), Matryoshka locally resonant sonic crystal, Journal of the Acoustical Society of America, 130, 2746.
- 3. Fano U. (1961), Effects of Configuration Interaction on Intensities and Phase Shifts, Physical Review, 124, 1866.
- 4. Fokin V., Ambati M., Sun C., Zhang X. (2007), Method for retrieving effective properties of locally resonant acoustic metamaterials, Physical Review B, 76, 144302.
- 5. Goffaux C., Sánchez-Dehesa J. (2003), Two-dimensional phononic crystals studied using a variational method: Application to lattices of locally resonant materials, Physical Review B, 67, 144301.
- 6. Goffaux C., Sánchez-Dehesa J., Yeyati A., Lambin P., Khelif A., Vasseur J., Djafari-Rouhani B. (2002), Evidence of Fano-like interference phenomena in locally resonant materials, Physical Review Letter, 88, 225502.
- 7. Hirsekorn M. (2004), Small-size sonic crystals with strong attenuation bands in the audible frequency range, Applied Physics Letters, 84, 3364-3366.
- 8. Kuang W., Hou Z., Liu Y. (2004), The effects of shapes and symmetries of scatterers on the phononic band gap in 2D phononic crystals, Physics Letters A, 332, 481-490.
- 9. Kushwaha M., Halevi P., Dobrzynski L., Djafari-Rouhani B. (1993), Acoustic band structure of periodic elastic composites, Physical Review Letter, 71, 2022.
- 10. Larabi H., Pennec Y., Djafari-Rouhani B., Vasseur J. (2007), Multicoaxial cylindrical inclusions in locally resonant phononic crystals, Physical Review E, 75, 066601.
- 11. Liu Z., Chan C., Sheng P. (2002), Three-component elastic wave band-gap material, Physical Review B, 65, 165116.
- 12. Liu Z., Chan C., Sheng P. (2005), Analytic model of phononic crystals with local resonances, Physical Review B, 71, 014103.
- 13. Liu Z., Zhang X., Mao Y., Zhu Y., Yang Z., Chan C., Sheng P. (2000), Locally resonant sonic materials, Science, 289, 1734.
- 14. Sainidou R., Stefanou N., Psarobas I. E., Modinos A. (2005), A layer-multiple-scattering method for phononic crystals and heterostructures of such, Computer Physics Communications, 166, 197-240.
- 15. Sigalas M., Economou E. (1992), Elastic and acoustic wave band structure, Journal of Sound and Vibration, 158, 377.
- 16. Wang G., Shao L., Liu Y., Wen J. (2006), Accurate evaluation of lowest band gaps in ternary locally resonant phononic crystals, Chinese Physics, 15, 1843-1848.
- 17. Wen J., Zhao H., Lv L., Yuan B., Wang G., Wen X. (2011), Effects of locally resonant modes on underwater sound absorption in viscoelastic materials, Journal of the Acoustical Society of America, 130, 1201-1208.
- 18. Xiao Y., Mace B., Wen J., Wen X. (2011), Formation and coupling of band gaps in a locally resonant elastic system comprising a string with attached resonators, Physics Letters A, 375, 1485.
- 19. Zhao H., Liu Y., Wang G., Wen J., Yu D., Han X., Wen X. (2005), Resonance modes and gap formation in a two-dimensional solid phononic crystal, Physical Review B, 72, 012301.
- 20. Zhao H., Liu Y., Wen J., Yu D., Wen X. (2007), Tri-component phononic crystals for underwater anechoic coatings, Physics Letters A, 367, 224-232.
- 21. Zhou X., Hu G. (2009), Analytic model of elastic metamaterials with local resonances, Physical Review B, 79, 195109.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3314ca20-42d7-43da-b417-767da57e3edf