PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance analysis and comparison of PMSM with concentrated winding and distributed winding

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The concentrated winding (CW) is obviously different from the traditional distributed winding (DW) in the arrangement of windings and the calculation of winding factors, which will inevitably lead to different performances of the permanent magnet synchronous motor (PMSM). In order to analyze the differences between the CW and the DW in the performance, a 3 kW, 1500 r/min PMSM is taken as an example to establish a 2-D finite element model. The correctness of the model is verified by comparing experimental data and calculated data. Firstly, the finite element method (FEM) is used to calculate the electromagnetic field of the PMSM, and the performance parameters of the PMSM are obtained. On this basis, the influences of the two winding structures on the performance are quantitatively analyzed, and the differences between the two winding structures on the performance of the PMSM will be determined. Finally, the differences of efficiency between the two winding structures are obtained. In addition, the influences of the winding structures on eddy current loss are further studied, and the mechanism of eddy current loss is revealed by studying the eddy current density. The analysis of this paper provides reference and practical value for the optimization design of the PMSM.
Rocznik
Strony
303--317
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wz.
Twórcy
autor
  • School of Electrical and Information Engineering, Zhengzhou University of Light Industry, No. 5 Dongfeng Road, Zhengzhou, Henan province, China, 450002
autor
  • School of Electrical and Information Engineering, Zhengzhou University of Light Industry, No. 5 Dongfeng Road, Zhengzhou, Henan province, China, 450002
  • School of Electrical and Information Engineering, Zhengzhou University of Light Industry, No. 5 Dongfeng Road, Zhengzhou, Henan province, China, 450002
autor
  • School of Electrical and Information Engineering, Zhengzhou University of Light Industry, No. 5 Dongfeng Road, Zhengzhou, Henan province, China, 450002
Bibliografia
  • [1] Zhu G., Zhu Y., Zhu J., Double-Circulatory Thermal Analyses of a Water-Cooled Permanent Magnet Motor Based on a Modified Model, IEEE Transactions on Magnetics, vol. 54, no. 3, pp. 1–4 (2018).
  • [2] Zhang B., Qu R., Wang J., Chen Y., Thermal Model of Totally Enclosed Water-Cooled PermanentMagnet Synchronous Machines for Electric Vehicle Application, IEEE Transactions on Industry Applications, vol. 51, no. 4, pp. 3020–3029 (2015).
  • [3] Chevailler S., Feng L., Binder A., Short-Circuit Faults in Distributed and Concentrated Windings of PM Synchronous Motors, 2007 European Conference on Power Electronics and Applications, pp. 1–10 (2007), DOI: 10.1109/EPE.2007.4417416.
  • [4] el-Refaie A.M., Shah M.R., Comparison of Induction Machine Performance with Distributed and Fractional-Slot Concentrated Windings, 2008 IEEE Industry Applications Society Annual Meeting, IAS, Edmonton (AB, Canada), pp. 1–8 (2008), DOI: 10.1109/08IAS.2008.30.
  • [5] Bacher J.P., Muetze A., Comparison of an Induction Machine with Both Conventionally Distributed and Fractional-Slot Concentrated Stator Windings, Elektrotechnik Und Informationstechnik, vol. 132, no. 1, pp. 39–45 (2015).
  • [6] Chong L., Rahman M.F., Comparison of d- and q-axis Inductances in an IPM Machine with IntegralSlot Distributed and Fractional-Slot Concentrated Windings, 2008 18th International Conference on Electrical Machines, pp. 1–5 (2008), DOI: 10.1109/ICELMACH.2008.4800107.
  • [7] Brown I.P., Sizov G.Y., Brown L.E., Impact of Rotor Design on Interior Permanent-Magnet Machines with Concentrated and Distributed Windings for Signal Injection-Based Sensorless Control and Power Conversion, IEEE Transactions on Industry Applications, vol. 52, no. 1, pp. 136–144 (2016).
  • [8] Han J., Li W., Wang L., Zhou X., Zhang X., Li Y., Calculation and analysis of the surface heattransfer coefficient and temperature fields on the three-dimensional complex end windings of a largeturbogenerator, IEEE Transactions on Industrial Electronics, vol. 61, no. 10, pp. 5222–5231 (2014).
  • [9] Li W., Zhang X., Cheng S., Cao J., Thermal Optimization for a HSPMG Used for Distributed Generation Systems, IEEE Transactions on Industrial Electronics, vol. 60, no. 2, pp. 474–482 (2013).
  • [10] Wang A., Jia Y., Soong W.L., Comparison of Five Topologies for an Interior Permanent-Magnet Machine for a Hybrid Electric Vehicle, IEEE Transactions on Magnetics, vol. 47, no. 10, pp. 3606–3609 (2011).
  • [11] Chong L., Dutta R., Comparison of Concentrated and Distributed Windings in an IPM Machine for Field Weakening Applications, 20th Australasian Universities Power Engineering Conference, Christchurch, New Zealand, pp. 1–5 (2010).
  • [12] Choi J.S., Izui K., Nishiwaki S., Topology Optimization of the Stator for Minimizing Cogging Torque of IPM Motors, IEEE Transactions on Magnetics, vol. 47, no. 10, pp. 3024–3027 (2011).
  • [13] Barcaro M., Bianchi N., Torque Ripple Reduction in Fractional-Slot Interior PM Machines Optimizing the Flux-Barrier Geometries, 2012 XXth International Conference on Electrical Machines, pp. 1496–1502 (2012), DOI: 10.1109/ICElMach.2012.6350076.
  • [14] Zhu Z.Q., Influence of Design Parameters on Cogging Torque in Permanent Magnet Machines, IEEE Transactions on Energy Conversion, vol. 15, no. 4, pp. 407–412 (2000).
  • [15] Zhu L., Jiang S.Z., Zhu Z.Q., Chan C.C., Analytical Methods for Minimizing Cogging Torque in Permanent-Magnet Machines, IEEE Transactions on Magnetics, vol. 45, no. 4, pp. 2023–2031 (2009).
  • [16] Kermanipour M.J., Ganji B., Modification in Geometric Structure of Double-Sided Axial Flux Switched Reluctance Motor for Mitigating Torque Ripple, Canadian Journal of Electrical and Computer Engineering, vol. 38, no. 4, pp. 318–322 (2015), DOI: 10.1109/CJECE.2015.2465160.
  • [17] Yang C., Zhang Y., Qiu H., Influence of Output Voltage Harmonic of Inverter on Loss and Temperature Field of Permanent Magnet Synchronous Motor, IEEE Transactions on Magnetics, vol. 55, no. 6 (2019), DOI: 10.1109/TMAG.2019.2899468.
  • [18] Qiu H., Wei Y., Yang C., Fan X., Influence of Different Frequency Harmonic Generated by Rectifier on High-speed Permanent Magnet Generator, Journal of Electrical Engineering and Technology, vol. 13, no. 5, pp. 1956–1964 (2018).
  • [19] Li W.L., Wang J., Kou B.Q., Loss Calculation and Thermal Simulation Analysis of High-Speed PM Synchronous Generators With Rotor Topology, 2010 International Conference on Computer Application and System Modeling, pp. V14-612–V14-616 (2010).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-33147b6e-ebfe-4787-ba71-e97cf5d479c7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.