Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Dynamic properties of the three degrees of freedom autoparametric system with spherical pendulum in the neighbourhood internal and external resonance are investigated. It was assumed that the spherical pendulum is suspended in the main body which is suspended by the element characterized by elasticity and damping and is excited harmonically in the vertical direction. The spherical pendulum is similar to the simple pendulum, but moves in 3-dimensional space, so the model with spherical pendulum is more similar to the real systems than the model with simply pendulum. In this paper the position of the main body is described by coordinate z and position of the pendulum is describe by the coordinate z and two angles: θ and φ in the vertical planes. This system has three degrees of freedom. Dynamic properties of the system described by three differential equations containing strongly nonlinear terms are investigated numerically. In autoparametric system one mode of vibration may excite or damp another one, and for except periodic or quasi-periodic vibrations there may also appear chaotic vibration. For characterizing an irregular chaotic response, time histories, bifurcation diagrams, power spectral densities, Poincaré maps and maximal exponents of Lyapunov have been developed.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
155--163
Opis fizyczny
Bibliogr. 10 poz., wykr.
Twórcy
autor
- Warsaw University of Technology, Institute of Machine Design Fundamentals
autor
- International School of Gdansk
Bibliografia
- 1. Fischer, C., Náprstek, J., and Pospıšil, S. (2012). Resonance behaviour of spherical pendulum–influence of damping. Engineering Mechanics, 6:255–261.
- 2. Ghigliazza, R. and Holmes, P. (2002). On the dynamics of cranes, or spherical pendula with moving supports. International Journal of Non-Linear Mechanics, 37(7):1211–1221.
- 3. Leung, A. and Kuang, J. (2006). On the chaotic dynamics of a spherical pendulum with a harmonically vibrating suspension. Nonlinear Dynamics, 43(3):213–238.
- 4. Ludwicki, M., Awrejcewicz, J., and Kudra, G. (2014). Spatial double physical pendulum with axial excitation: computer simulation and experimental set-up. International Journal of Dynamics and Control, 3(1):1–8.
- 5. Markeyev, A. (1999). The dynamics of a spherical pendulum with a vibrating suspension. Journal of Applied Mathematics and Mechanics, 63(2):205–211.
- 6. Miles, J. W. (1962). Stability of forced oscillations of a spherical pendulum. Quarterly of Applied Mathematics, 20:21–32.
- 7. Perig, A., Stadnik, A., Deriglazov, A., and Podlesny, S. (2014). 3 dof spherical pendulum oscillation with a union slewing piwot center and a small angle assumption. Shock and Vibration, pages 1–32.
- 8. Sado, D. (2010). Drgania regularne i chaotyczne w wybranych układach z wahadłami. WNT Warszawa.
- 9. Sado, D., Freundlich, J., and Dudanowicz, A. (2016). The dynamics of a coupled mechanical system with spherical pendulum. Vibrations in Physical Systems, XXVII:309–316.
- 10. Witkowski, B. (2014). Modeling of the dynamics of two coupled spherical pendula. The European Physical Journal Topics, 223(4):631–648.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-330f1451-ed95-42a3-a46c-ded9a28b9fe0