Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The dual-band avalanche photodiode (APD) detector based on a HgCdTe material system was designed and analysed in detail numerically. A theoretical analysis of the two-colour APD intended for the mid wavelength infrared (MWIR) and long wavelength infrared (LWIR) ranges was conducted. The main purpose of the work was to indicate an approach to select APD structure parameters to achieve the best performance at high operating temperatures (HOT). The numerical simulations were performed by Crosslight numerical APSYS platform which is designed to simulate semiconductor optoelectronic devices. The current-voltage characteristics, current gain, and excess noise analysis at temperature T = 230 K vs. applied voltage for MWIR (U = 15 V) and LWIR (U = –6 V) ranges were performed. The influence of low and high doping in both active layers and barrier on the current gain and excess noise is shown. It was presented that an increase of the APD active layer doping leads to an increase in the photocurrent gain in the LWIR detector and a decrease in the MWIR device. The dark current and photocurrent gains were compared. Photocurrent gain is higher in both spectral ranges.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. e145093
Opis fizyczny
Bibliogr. 17 poz., rys., tab., wykr.
Twórcy
autor
- Institute of Applied Physics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
autor
- Institute of Applied Physics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
autor
- Institute of Applied Physics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
autor
- Institute of Applied Physics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
Bibliografia
- [1] Plis, E. A., Krishna, S. S., Gautam, N. & Wyers, S. Bias switchable dual-band InAs/GaSb superlattice detector with pBp architecture. IEEE Photon. J. 3, 234-240 (2011). https://doi.org/10.1109/JPHOT.2011.2125949.
- [2] Rutkowski, J. et al. Two-colour HgCdTe infrared detectors operating above 200K. Opto-Electron. Rev. 16, 321-327 (2008). https://doi.org/10.2478/s11772-008-0023-2.
- [3] Hu, W. et al. 128×128 long-wavelength/mid-wavelength two-color HgCdTe infrared focal plane array detector with ultralow spectral cross talk. Opt. Lett. 39, 5184-5187 (2014). https://doi.org/10.1364/OL.39.005184.
- [4] Rhiger, D. R. & Bangs, J. W. Current-voltage analysis of dual-band n-p-n HgCdTe detectors. J. Electron. Mater. 51, 4721-4730 (2022). https://doi.org/10.1007/s11664-022-09803-4.
- [5] Halpert, H. & Musicant, B. L. N-color (Hg,Cd)Te photodetectors. Appl. Opt. 11, 2157-2161 (1972). https://doi.org/10.1364/AO.11.002157.
- [6] Beck, J. et al. The HgCdTe electron avalanche photodiode. J. Electron. Mater. 35, 1166-1173 (2006). https://doi.org/10.1007/s11664-006-0237-3.
- [7] He, J. et al. Design of a bandgap-engineered barrier-blocking HOT HgCdTe long-wavelength infrared avalanche photodiode. Opt. Express 28, 33556-33563 (2020). https://doi.org/10.1364/OE.408526.
- [8] Rogalski, A. HgCdTe infrared detector material: history, status and outlook. Rep. Prog. Phys. 68, 2267-2336(2005). https://doi.org/10.1088/0034-4885/68/10/R01.
- [9] Singh, A., Srivastav, V. & Pal, R. HgCdTe avalanche photodiodes A review. Opt. Laser Technol. 43, 1358-1370 (2011). https://doi.org/10.1016/j.optlastec.2011.03.009.
- [10] Kopytko, M., Sobieski, J., Xie, R., Jozwikowski, K. & Martyniuk, P. Impact ionization in HgCdTe avalanche photodiode optimized to 8 μm cut-off wavelength at 230 K. Infrared Phys. Technol. 115, 103704 (2021). https://doi.org/10.1016/j.infrared.2021.103704.
- [11] Levaquet, G., Nasser, M., Bertho, D., Orsal, B. & Alabedra, R. Ionization energies in CdxHg1-xTe avalanche photodiodes. Semicond. Sci. Technol. 8, 1317-1323 (1993). https://doi.org/10.1088/0268-1242/8/7/021.
- [12] Kinch, M., Beck, J. D., Wan, C. F., Ma, F. & Campebell, J. HgCdTe electron avalanche photodiodes. J. Electron. Mater.33, 630-639 (2004). https://doi.org/10.1007/s11664-004-0058-1.
- [13] Perrais, G, et al. Demonstration of multifunctional bi-colouravalanche gain detection in HgCdTe FPA. Proc. SPIE 6395, 63950H (2006). https://doi.org/10.1117/12.692689.
- [14] Cao, L., Hou, Y. & Zhang, L. Design and simulation of bias-selectable few photon dual-colour photodetector operating in visible and near infrared regions. Optoelectron. Lett. 16, 0333-0337 (2020). https://doi.org/10.1007/s11801-020-9165-3.
- [15] Crosslight Device Simulation Software - General Manual 2019 version. Crossligth Software Inc. (2019). https://crosslight.com/
- [16] Osaka, F., Mikawa, T. & Kaneda, T. Impact ionization coefficient of the electrons and holes in (100)-oriented Gal-xInxAsyP1-y. IEEE J. Quantum Electron. 21, 1326-1338 (1985). https://doi.org/10.1109/JQE.1985.1072835.
- [17] Kinch, M. A. Fundamentals of Infrared Detectors Materials. (SPIE Press, Bellingham, Washington, 2007).
Uwagi
1. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
2. This research was funded by The National Science Centre, Poland – grant no. UMO-2019/33/B/ST7/00614.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-330e8996-f51c-450c-910a-4e0784b28028