PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of capabilities of the nanoindentation test in the determination of flow stress characteristics of the matrix material in porous sinters

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Herein, we evaluate the nanoindentation test capabilities in the determination of flow stress characteristics of the matrix material in porous sinters. The Distaloy AB sample with 15% porosity after the sintering operation is selected as a case study for the investigation. 2D and 3D imaging techniques are employed first to highlight difficulties in identifying reliable nano hardness measurement zones for further properties evaluation. Then, nanoindentation test results are acquired with Berkovich tip pressed under various loads at different locations in the sample. Systematic indentations in the quartz sample are used as a cleaning procedure to minimize the effect of the possible build-up around the indenter tip. The representative indentation load range is selected based on the extracted material characteristics. With that, the stress–strain response of the sinter matrix material is identified. The reliability of the determined flow stress curve is confirmed with the use of conical nanoindentation measurement results and finite element simulations. Obtained results show that it is possible to calculate reliable flow stress characteristics of the matrix in the porous samples, with the assumption that experiments under various loading conditions and from various locations in the matrix are performed. It is also pointed out that various indentation loads should be used to eliminate the influence of the pile-up or scale effects that affect the overall material response.
Rocznik
Strony
art. no. e21, 2022
Opis fizyczny
Bibliogr. 34 poz., rys., wykr.
Twórcy
autor
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Mickiewicza 30 av., 30-059 Krakow, Poland
autor
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Mickiewicza 30 av., 30-059 Krakow, Poland
autor
  • Institute for Frontier Materials, Deakin University, Geelong, VIC 3217, Australia
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Mickiewicza 30 av., 30-059 Krakow, Poland
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Mickiewicza 30 av., 30-059 Krakow, Poland
  • Faculty of Materials Engineering and Metallurgy, Silesian University of Technology, Krasińskiego 8 st., 40-019 Katowice, Poland
  • Faculty of Materials Engineering and Metallurgy, Silesian University of Technology, Krasińskiego 8 st., 40-019 Katowice, Poland
Bibliografia
  • 1. Pietrzyk M, Madej L, Rauch L, Szeliga D. Computational materials engineering: achieving high accuracy and efficiency in metals processing simulations. ButterworthHeinemann Elsevier; 2015.
  • 2. Gurson A. Continuum theory of ductile rupture by void nucleation and growth. Part I–yield criteria and flow rules for porous ductile media. J Eng Mater Technol. 1977;99:2–15.
  • 3. Pardoen T, Pineau A. Comprehensive structural integrity. In: Milne I, Ritchie RO, Karihaloo B, editors. Failure mechanisms of metals. Elsevier; 2007. p. 684–797.
  • 4. Monchiet V, Cazacu O, Charkaluk E, Kondo D. Macroscopic yield criteria for plastic anisotropic materials containing spheroidal voids. Int J Plast. 2008;24(7):1158–89.
  • 5. Besson J. Damage of ductile materials deforming under multiple plastic or viscoplastic mechanisms. Int J Plast. 2009;25:2204–21.
  • 6. Besson J. Continuum models of ductile fracture: a review. Int J Damage Mech. 2010;19:3–52.
  • 7. Benzerga A, Leblond JB. Ductile fracture by void growth to coalescence. Adv Appl Mech. 2010;44:169–305.
  • 8. Gologanu M, Leblond J, Devaux J. Continuum micromechanics. CISM courses and lectures. In: Recent extensions of Gurson’s model for porous ductile metals. Springer Verlag; 1997. p. 61–130.
  • 9. Hajder L, Madej L. Sphere packing algorithm for the generation of digital models of polycrystalline microstructures with heterogeneous grain sizes. Comput Methods Mater Sci. 2020;20:22–30.
  • 10. Soyarslan C, Bargmann C, Pradas M, Weissmüller J. 3D stochastic bicontinuous microstructures: generation, topology and elasticity. Acta Mater. 2018;149:326–40.
  • 11. Doroszko M, Seweryn A. A new numerical modelling method for deformation behaviour of metallic porous materials using X-ray computed microtomography. Mater Sci Eng A. 2017;689:142–56.
  • 12. Bodla KK, Garimella SV, Murthy JY. 3D reconstruction and design of porous media from thin sections. Int J Heat Mass Transf. 2014;73:250–64.
  • 13. Doroszko M, Seweryn A. Pore-scale numerical modelling of large deformation behaviour of sintered porous metals under compression using computed microtomography. Mech Mater. 2020;141:103259.
  • 14. Doroszko M, Seweryn A. Numerical modeling of the tensile deformation process of sintered 316L based on microtomography of porous mesostructures. Mater Des. 2015;88:493–504.
  • 15. Uchic MD, Shade PA, Dimiduk DM. Plasticity of micrometer-scale single crystals in compression. Annu Rev Mater Res. 2009;39:361–86.
  • 16. Gianola DS, Eberl C. Micro- and nanoscale tensile testing of materials. JOM. 2009;3:24–35.
  • 17. Walter M, Kraft O. A new method to measure torsion moments on small-scaled specimens. Rev Sci Instrum. 2011;82:035109.
  • 18. Zhanga Q, Singaravelu ASS, Zhao Y, Jing T, Chawla N. Mechanical properties of a thermally-aged cast duplex stainless steel by nanoindentation and micropillar compression. Mater Sci Eng A. 2019;743:520–8.
  • 19. Salari S, Rahman MDS, Polycarpou AA, Beheshti A. Elevated temperature mechanical properties of Inconel 617 surface oxide using nanoindentation. Mater Sci Eng A. 2020;788:139539.
  • 20. Herrmann K, Hasche K, Pohlenz F, Seemann R. Characterisation of the geometry of indenters used for the micro- and nanoindentation method. Measurement. 2001;29:201–7.
  • 21. Rosiak M. The results of consolidation of sinters being deformed under complex loading condition. Arch Metall Mater. 2013;58:1197–205.
  • 22. Roskosz S, Chrapoński J, Madej L. Application of systematic scanning and variance analysis method to evaluation of pores arrangement in sintered steel. Measurement. 2021;168:108325.
  • 23. Weiland H, Rouns TN, Liu J. The role of particle stimulated nucleation during recrystallization of an aluminum-manganese alloy. Z Metallkd. 1994;85:592–7.
  • 24. Madej L, Legwand A, Mojzeszko M, Chraponski J, Roskosz S, Cwajna J. Experimental and numerical two- and three-dimensional investigation of porosity morphology of the sintered metallic material. Arch Civ Mech Eng. 2018;18:1520–34.
  • 25. Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7:1564–83.
  • 26. Gadelrab KR, Chiesa M, Bonilla FA. Implications of the idea of effective tip shape on nanoindentation unloading curves: AFM measurements and FE simulation. J Mater Res. 2012;27:126–31.
  • 27. Gong J, Deng B, Qiu H, Jiang D. Description of the nanoindentation unloading curves with a universal function: theoretical consideration and applications to brittle materials. Mater Chem Phys. 2020;251:123165.
  • 28. Haeng LJ, Pharr GM, Gao Y. Corrections to the stiffness relationship in 3-sided and conical indentation problems. Int J Solids Struct. 2019;166:154–66.
  • 29. Tao P, Gong JM, Wang YF, Jiang Y, Li Y, CenW W. Characterization on stress-strain behavior of ferrite and austenite in a 2205 duplex stainless steel based on nanoindentation and finite element method. Results Phys. 2018;11:377–84.
  • 30. Chicot D. Hardness length-scale factor to model nano- and micro-indentation size effects. Mater Sci Eng, A. 2009;499:454–61.
  • 31. Rodrguez R, Gutierrez I. Correlation between nanoindentation and tensile properties: influence of the indentation size effect. Mater Sci Eng A. 2003;361:377–84.
  • 32. Ma ZS, Zhou YC, Long SG, Lu CS. An inverse approach for extracting elastic–plastic properties of thin films from small scale sharp indentation. J Mater Sci Technol. 2012;28:626–35.
  • 33. Dao M, Chollacoop NV, Van Vliet KJ, Venkatesh TA, Suresh S. Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater. 2001;49:3899–918.
  • 34. Perzynski K, Cios G, Szwachta G, Zych D, Setty M, Bala B, Madej L. Numerical modelling of a compression test based on the 3D digital material representation of pulsed laser deposited TiN thin films. Thin Solid Films. 2019;673:34–43.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-33089f27-316e-4ba7-8fdc-4c5618728f52
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.