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Abstract. In this paper we are interested in the existence of solutions for the Dirichlet
problem associated with degenerate nonlinear elliptic equations

−
n∑

j=1

Dj

[
ω(x)Aj(x, u,∇u)

]
+ b(x, u,∇u)ω(x) + g(x)u(x) =

= f0(x)−
n∑

j=1

Djfj(x) on Ω

in the setting of the weighted Sobolev spaces W1,p
0 (Ω, ω).
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1. INTRODUCTION

In this paper we prove the existence of (weak) solutions in the weighted Sobolev spaces
W1,p

0 (Ω, ω) (see Definition 2.2) for the Dirichlet problem

(P)

Lu(x) = f0(x)−
n∑
j=1

Djfj(x) on Ω,

u(x) = 0 on ∂Ω,

where L is the partial differential operator

Lu(x) = −
n∑
j=1

Dj

[
ω(x)Aj(x, u(x),∇u(x))

]
+ b(x, u(x),∇u(x))ω(x) + g(x)u(x),
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where Dj = ∂/∂xj , Ω is a bounded open set in Rn, ω is a weight function and the
functions Aj : Ω × R × Rn→R (j = 1, . . . , n), b : Ω × R × Rn→R, g : Ω → R satisfy
the following conditions:

(H1) x 7→Aj(x, η, ξ) is measurable on Ω for all (η, ξ) ∈ R× Rn,
(η, ξ)7→Aj(x, η, ξ) is continuous on R× Rn for almost all x ∈ Ω.

(H2) There exist a constant θ1 > 0 such that

[A(x, η, ξ)−A(x, η′, ξ′)].(ξ − ξ′) ≥ θ1|ξ − ξ′|
p
,

whenever ξ, ξ′ ∈ Rn, ξ 6= ξ′, where A(x, η, ξ) = (A1(x, η, ξ), . . . ,An(x, η, ξ)).
(H3)

A(x, η, ξ).ξ ≥ λ1|ξ|p + Λ1|η|p − g1(x)|η|,

with g1 ∈ Lp
′
(Ω, ω), where λ1 and Λ1 are positive constants.

(H4)
|A(x, η, ξ)| ≤ K1(x) + h1(x)|η|p/p

′
+ h2(x)|ξ|p/p

′
,

where K1, h1 and h2 are positive functions, with h1 and h2 ∈ L∞(Ω), and
K1 ∈ Lp

′
(Ω, ω) (with 1/p+ 1/p′ = 1).

(H5) x 7→b(x, η, ξ) is measurable on Ω for all (η, ξ) ∈ R× Rn,
(η, ξ) 7→b(x, η, ξ) is continuous on R× Rn for almost all x ∈ Ω.

(H6) There exists a constant θ2 > 0 such that

[b(x, η, ξ)− b(x, η′, ξ′)](η − η′) ≥ θ2|η − η′|
p
,

whenever η, η′ ∈ R, η 6= η′.
(H7)

b(x, η, ξ)η ≥ λ2|ξ|p + Λ2|η|p − g2(x)|η|,

with g2 ∈ Lp
′
(Ω, ω), where λ2 and Λ2 are positive constants.

(H8)
|b(x, η, ξ)| ≤ K2(x) + h3(x)|η|p/p

′
+ h4(x)|ξ|p/p

′
,

where K2, h3 and h4 are positive functions, with K2 ∈ Lp
′
(Ω, ω), h3 and h4 ∈

L∞(Ω).
(H9) g/ω ∈ Lq(Ω, ω), where 1/q = 1/p′ − 1/p, and g(x) ≥ 0 a.e. x ∈ Ω.

By a weight, we shall mean a locally integrable function ω on Rn such that ω(x) > 0
for a.e. x ∈ Rn. Every weight ω gives rise to a measure on the measurable subsets on
Rn through integration. This measure will be denoted by µ. Thus, µ(E) =

∫
E
ω(x) dx

for measurable sets E ⊂ Rn.
In general, the Sobolev spaces Wk,p(Ω) without weights occur as spaces of solutions

for elliptic and parabolic partial differential equations. For degenerate partial differ-
ential equations, i.e., equations with various types of singularities in the coefficients,
it is natural to look for solutions in weighted Sobolev spaces (see [1, 3] and [4]).

A class of weights, which is particulary well understood, is the class of Ap-weights
(or Muckenhoupt class) that was introduced by B. Muckenhoupt (see [8]). These
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classes have found many usefull applications in harmonic analysis (see [9]). Another
reason for studying Ap-weights is the fact that powers of distance to submanifolds
of Rn often belong to Ap (see [7]). There are, in fact, many interesting examples of
weights (see [6] for p-admissible weights).

The following theorem will be proved in section 3.

Theorem 1.1. Assume (H1)–(H9). If ω ∈ Ap (with 2 < p < ∞), f0/ω ∈ Lp
′
(Ω, ω),

fj/ω ∈ Lp
′
(Ω, ω) (j = 1, . . . , n), then the problem (P) has a unique solution u ∈

W 1,p
0 (Ω, ω). Moreover, we have

‖u‖W 1,p
0 (Ω,ω) ≤

1

γp′/p

( n∑
j=0

‖fj/ω‖Lp′ (Ω,ω) + ‖g1‖Lp′ (Ω,ω) + ‖g2/ω‖Lp′ (Ω,ω)

)p′/p
,

where γ = min{λ1, λ2,Λ1,Λ2}.

2. DEFINITIONS AND BASIC RESULTS

Let ω be a locally integrable nonnegative function in Rn and assume that 0 < ω <∞
almost everywhere. We say that ω belongs to the Muckenhoupt class Ap, 1 < p <∞,
or that ω is an Ap-weight, if there is a constant C = Cp,ω such that(

1

|B|

∫
B

ω(x)dx

)(
1

|B|

∫
B

ω1/(1−p)(x)dx

)p−1

≤ C

for all balls B ⊂ Rn, where | · | denotes the n-dimensional Lebesgue measure in Rn.
If 1 < q ≤ p, then Aq ⊂ Ap (see [5, 6] or [9] for more information about Ap-weights).
The weight ω satisfies the doubling condition if there exists a positive constant C
such that

µ(B(x; r)) ≤ Cµ(B(x; 2r)),

for every ball B = B(x; r) ⊂ Rn, where µ(B) =
∫
B
ω(x) dx. If ω ∈ Ap, then µ is

doubling (see Corollary 15.7 in [6]).
As an example of an Ap-weight, the function ω(x) = |x|α, x ∈ Rn, is in Ap if and

only if −n < α < n(p− 1) (see Corollary 4.4, Chapter IX in [9]).
If ω ∈ Ap, then (

|E|
|B|

)p
≤ C µ(E)

µ(B)

whenever B is a ball in Rn and E is a measurable subset of B (see 15.5 the strong
doubling property in [6]). Therefore, if µ(E) = 0, then |E| = 0.

Definition 2.1. Let ω be a weight, and let Ω ⊂ Rn be open. For 0 < p < ∞ we
define Lp(Ω, ω) as the set of measurable functions f on Ω such that

‖f‖Lp(Ω,ω) =

(∫
Ω

|f(x)|pω(x)dx

)1/p

<∞.
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If ω ∈ Ap, 1 < p < ∞, then ω−1/(p−1) is locally integrable and we have
Lp(Ω, ω) ⊂ L1

loc(Ω) for every open set Ω (see Remark 1.2.4 in [10]). It thus makes
sense to talk about weak derivatives of functions in Lp(Ω, ω).

Definition 2.2. Let ω be a Ap-weight (1 < p < ∞), and let Ω ⊂ Rn be open. We
define the weighted Sobolev spaceW 1,p(Ω, ω) as the set of functions u ∈ Lp(Ω, ω) with
weak derivatives Dju ∈ Lp(Ω, ω). The norm of u in W 1,p(Ω, ω) is defined by

‖u‖W 1,p(Ω,ω) =

(∫
Ω

|u(x)|pω(x) dx+

n∑
j=1

∫
Ω

|Dju(x)|pω(x) dx

)1/p

. (2.1)

We also define W 1,p
0 (Ω, ω) as the closure of C∞0 (Ω) with respect to the norm

‖.‖W 1,p(Ω,ω).

If ω ∈ Ap, then W 1,p(Ω, ω) is the closure of C∞(Ω) with respect to the norm (2.1)
(see Theorem 2.1.4 in [10]). The spacesW 1,p(Ω, ω) andW 1,p

0 (Ω, ω) are Banach spaces.
It is evident that a weight function ω which satisfies 0 < c1≤ω(x)≤ c2 for x∈Ω

(where c1 and c2 are constants), gives nothing new (the space W1,p
0 (Ω, ω) is then

identical to the classical Sobolev space W1,p
0 (Ω)). Consequently, we shall be interested

above in all such weight functions ω which either vanish somewhere in Ω̄ or increase
to infinity (or both).

In this paper we use the following two theorems.

Theorem 2.3. Let ω ∈ Ap, 1 < p < ∞, and let Ω be a bounded open set in Rn. If
um→u in Lp(Ω, ω) then there exists a subsequence {umk

} and a function Φ ∈ Lp(Ω, ω)
such that:
(i) umk

(x)→ u(x), mk →∞, µ-a.e. on Ω,
(ii) |umk

(x)| ≤ Φ(x), µ-a.e. on Ω

(where µ(E) =
∫
E
ω(x) dx).

Proof. The proof of this theorem follows the lines of Theorem 2.8.1 in [2].

Theorem 2.4. Let Ω be an open bounded set in Rn and ω ∈ Ap (1 < p <∞). There
exist constants CΩ and δ positive such that for all u ∈ C∞0 (Ω) and all k satisfying
1 ≤ k ≤ n/(n− 1) + δ,

‖u‖Lkp(Ω,ω) ≤ CΩ‖∇u‖Lp(Ω,ω).

Proof. See Theorem 1.3 in [3].

Definition 2.5. We say that an element u ∈ W 1,p
0 (Ω, ω) is a (weak) solution of

problem (P) if
n∑
j=1

∫
Ω

ω(x)Aj(x, u(x),∇u(x))Djϕ(x)dx+

∫
Ω

b(x, u(x),∇u(x))ϕ(x)ω(x) dx+

+

∫
Ω

g(x)ϕ(x)u(x) dx =

∫
Ω

f0(x)ϕ(x)dx+

n∑
j=1

∫
Ω

fj(x)Djϕ(x)dx

for all ϕ ∈W 1,p
0 (Ω, ω).
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3. PROOF OF THEOREM 1.1

The basic idea is to reduce the problem (P) to an operator equation Au = T and
apply the theorem below.

Theorem 3.1. Let A : X→X∗ be a monotone, coercive and hemicontinuous operator
on the real, separable, reflexive Banach space X. Then the following assertions hold:

(a) for each T ∈ X∗ the equation Au = T has a solution u ∈ X,
(b) if the operator A is strictly monotone, then equation Au = T is uniquely solvable

in X.

Proof. See Theorem 26.A in [11].

To proof Theorem 1.1, we define B,B1, B2 : W 1,p
0 (Ω, ω) × W 1,p

0 (Ω, ω)→R and
T : W 1,p

0 (Ω, ω)→R by
B(u, ϕ) = B1(u, ϕ) +B2(u, ϕ),

B1(u, ϕ) =

n∑
j=1

∫
Ω

ωAj(x, u,∇u)Djϕdx =

=

∫
Ω

ωA(x, u,∇u).∇ϕdx,

B2(u, ϕ) =

∫
Ω

b(x, u(x),∇u(x))ϕ(x)ω(x) dx+

+

∫
Ω

g(x)ϕ(x)u(x)dx,

T (ϕ) =

∫
Ω

f0(x)ϕ(x) dx+

+

n∑
j=1

∫
Ω

fj(x)Djϕ(x) dx.

Then u ∈W 1,p
0 (Ω, ω) is a (weak) solution to problem (P) if

B(u, ϕ) = B1(u, ϕ) +B2(u, ϕ) = T (ϕ),

for all ϕ ∈W 1,p
0 (Ω, ω).

Step 1. For j = 1, ..., n we define the operator Fj : W 1,p
0 (Ω, ω)→Lp′(Ω, ω) by

(Fju)(x) = Aj(x, u(x),∇u(x)).
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We have that the operator Fj is bounded and continuous. In fact:
(i) Using (H4) we obtain

‖Fju‖p
′

Lp′ (Ω,ω)
=

∫
Ω

|Fju(x)|p
′
ω dx =

∫
Ω

|Aj(x, u,∇u)|p
′
ω dx ≤

≤
∫
Ω

(
K1 + h1|u|p/p

′
+ h2|∇u|p/p

′
)p′

ω dx ≤

≤ Cp
∫
Ω

[
(Kp′

1 + hp
′

1 |u|
p

+ hp
′

2 |∇u|
p
)ω

]
dx =

= Cp

[ ∫
Ω

Kp′

1 ω dx+

∫
Ω

hp
′

1 |u|
p
ω dx+

∫
Ω

hp
′

2 |∇u|
p
ω dx

]
,

(3.1)

where the constant Cp depends only on p.
We have∫

Ω

hp
′

1 |u|
p
ω dx ≤ ‖h1‖p

′

L∞(Ω)

∫
Ω

|u|pω dx ≤ ‖h1‖p
′

L∞(Ω)‖u‖
p

W 1,p
0 (Ω,ω)

and ∫
Ω

hp
′

2 |∇u|
p
ω dx ≤ ‖h2‖p

′

L∞(Ω)

∫
Ω

|∇u|pω dx ≤ ‖h2‖p
′

L∞(Ω)‖u‖
p

W 1,p
0 (Ω,ω)

.

Therefore, in (3.1) we obtain

‖Fju‖Lp′ (Ω,ω) ≤ Cp
(
‖K‖Lp′ (Ω,ω) + (‖h1‖L∞(Ω) + ‖h2‖L∞(Ω))‖u‖

p/p′

W 1,p
0 (Ω,ω)

)
.

(ii) Let um → u in W 1,p
0 (Ω, ω) as m → ∞. We need to show that Fjum→Fju

in Lp
′
(Ω, ω).

If um → u inW 1,p
0 (Ω, ω), then um → u in Lp(Ω, ω) and |∇um| → |∇u| in Lp(Ω, ω).

Using Theorem 2.3, there exists a subsequence {umk
} and functions Φ1 and Φ2 in

Lp(Ω, ω) such that

umk
(x)→u(x), µ− a.e. in Ω,

|umk
(x)| ≤ Φ1(x), µ− a.e. in Ω,

|∇umk
(x)|→|∇u(x)|, µ− a.e. in Ω,

|∇umk
(x)| ≤ Φ2(x), µ− a.e. in Ω.
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Hence, using (H4), we obtain

‖Fjumk
− Fju‖p

′

Lp′ (Ω,ω)
=

∫
Ω

|Fjumk
(x)− Fju(x)|p

′
ω dx =

=

∫
Ω

|Aj(x, umk
,∇umk

)−Aj(x, u,∇u)|p
′
ω dx ≤

≤ Cp
∫
Ω

(
|Aj(x, umk

,∇umk
)|p

′
+ |Aj(x, u,∇u)|p

′
)
ω dx ≤

≤ Cp
[ ∫

Ω

(
K1 + h1|umk

|p/p
′
+ h2|∇umk

|p/p
′
)p′

ω dx+

+

∫
Ω

(
K1 + h1|u|p/p

′
+ h2|∇u|p/p

′
)p′

ω dx

]
≤

≤ 2Cp

∫
Ω

(
K1 + h1Φ

p/p′

1 + h2Φ
p/p′

2

)p′
ω dx ≤

≤ 2Cp

[ ∫
Ω

Kp′

1 ω dx+

∫
Ω

hp
′

1 Φp1ω dx+

∫
Ω

hp
′

2 Φp2ω dx

]
≤

≤ 2Cp

[
‖K1‖p

′

Lp′ (Ω,ω)
+ ‖h1‖p

′

L∞(Ω)

∫
Ω

Φp1ω dx+

+ ‖h2‖p
′

L∞(Ω)

∫
Ω

Φp2ω dx

]
≤

≤ 2Cp

[
‖K1‖p

′

Lp′ (Ω,ω)
+ ‖h1‖p

′

L∞(Ω) ‖Φ1‖pLp(Ω,ω)+

+ ‖h2‖p
′

L∞(Ω)‖Φ2‖pLp(Ω,ω)

]
.

By condition (H1), we have

Fjum(x) = Aj(x, um(x),∇um(x))→Aj(x, u(x),∇u(x)) = Fju(x),

as m→∞. Therefore, by the dominated convergence theorem, we obtain

‖Fjumk
− Fju‖Lp′ (Ω,ω) → 0,

that is,
Fjumk

→ Fju in Lp
′
(Ω, ω).

By the convergence principle in Banach spaces, we have

Fjum → Fju in Lp
′
(Ω, ω). (3.2)
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Step 2. We define the operator G : W 1,p
0 (Ω, ω)→ Lp

′
(Ω, ω) by

(Gu)(x) = b(x, u(x),∇u(x)).

We also have that the operator G is continuous and bounded. In fact:
(i) Using (H8) we obtain

‖Gu‖p
′

Lp′ (Ω,ω)
=

∫
Ω

|Gu|p
′
ω dx =

∫
Ω

|b(x, u,∇u)|p
′
ωdx ≤

≤
∫
Ω

(
K2 + h3|u|p/p

′
+ h4|∇u|p/p

′
)p′

ω dx ≤

≤ Cp
∫
Ω

[
(Kp′

2 + hp
′

3 |u|
p

+ hp
′

4 |∇u|
p
)ω

]
dx =

= Cp

[ ∫
Ω

Kp′

2 ω dx+

∫
Ω

hp
′

3 |u|
p
ω dx+

∫
Ω

hp
′

4 |∇u|
p
ω dx

]
≤

≤ Cp
(
‖K2‖p

′

Lp′ (Ω,ω)
+ (‖h3‖p

′

L∞(Ω) + ‖h4‖p
′

L∞(Ω)) ‖u‖
p

W 1,p
0 (Ω,ω)

)
.

(ii) By the same argument used in Step 1(ii), we obtain analogously, if um → u in
W 1,p

0 (Ω, ω), then
Gum→Gu in Lp

′
(Ω, ω). (3.3)

Step 3. We have

|T (ϕ)| ≤
∫
Ω

|f0||ϕ| dx+

n∑
j=1

∫
Ω

|fj ||Djϕ| dx =

=

∫
Ω

|f0|
ω
|ϕ|ω dx+

n∑
j=1

∫
Ω

|fj |
ω
|Djϕ|ω dx ≤

≤ ‖f0/ω‖Lp′ (Ω,ω)‖ϕ‖Lp(Ω,ω) +

n∑
j=1

‖fj/ω‖Lp′ (Ω,ω)‖Djϕ‖Lp(Ω,ω) ≤

≤
(
‖f0/ω‖Lp′ (Ω,ω) +

n∑
j=1

‖fj/ω‖Lp′ (Ω,ω)

)
‖ϕ‖W 1,p

0 (Ω,ω).

Moreover, using (H4), (H8), (H9) and the generalized Hölder inequality, we also have

|B(u, ϕ)| ≤ |B1(u, ϕ)|+ |B2(u, ϕ)| ≤

≤
n∑
j=1

∫
Ω

|Aj(x, u,∇u)||Djϕ|ω dx+

∫
Ω

|b(x, u,∇u)| |ϕ|ω dx+

+

∫
Ω

|g| |u| |ϕ| dx.

(3.4)



Existence and uniqueness of the solutions. . . 23

In (3.4) we have

∫
Ω

|A(x, u,∇u)| |∇ϕ|ω dx ≤
∫
Ω

(
K1 + h1|u|p/p

′
+ h2|∇u|p/p

′
)
|∇ϕ|ω dx ≤

≤ ‖K1‖p
′

Lp′ (Ω,ω)
‖ϕ‖pLp(Ω,ω) + ‖h1‖L∞(Ω)‖u‖

p/p′

Lp(Ω,ω)‖∇ϕ‖Lp(Ω,ω)+

+ ‖h2‖L∞(Ω)‖∇u‖
p/p′

Lp(Ω,ω)‖∇ϕ‖Lp(Ω,ω) ≤

≤
(
‖K1‖Lp′ (Ω,ω) + (‖h1‖L∞(Ω) + ‖h2‖L∞(Ω))‖u‖

p/p′

W 1,p
0 (Ω,ω)

)
‖ϕ‖W 1,p

0 (Ω,ω)

and∫
Ω

|b(x, u,∇u)| |ϕ|ω dx ≤
∫
Ω

(
K2 + h3|u|p/p

′
+ h4|∇u|p/p

′
)
|ϕ|ω dx ≤

≤
∫
Ω

K2 |ϕ|ω dx+ ‖h3‖L∞(Ω)

∫
Ω

|u|p/p
′
|ϕ|ω dx+ ‖h4‖L∞(Ω)

∫
Ω

|∇u|p/p
′
|ϕ|ω dx ≤

≤
(
‖K2‖Lp′ (Ω,ω) + ‖h3‖L∞(Ω)‖u‖

p/p′

W 1,p
0 (Ω,ω)

+ ‖h4‖L∞(Ω)‖u‖
p/p′

W 1,p
0 (Ω,ω)

)
‖ϕ‖W 1,p

0 (Ω,ω)

and, since 1/q + 1/p+ 1/p = 1,

∫
Ω

|g||u||ϕ| dx =

∫
Ω

|g|
ω
|u||ϕ|ω dx ≤

≤ ‖g/ω‖Lq(Ω,ω)‖u‖Lp(Ω,ω)‖ϕ‖Lp(Ω,ω) ≤

≤ ‖g/ω‖Lq(Ω,ω)‖u‖W 1,p
0 (Ω,ω)‖ϕ‖W 1,p

0 (Ω,ω).

Hence, in (3.4) we obtain, for all u, ϕ ∈W 1,p
0 (Ω, ω)

|B(u, ϕ)| ≤
[
‖K1‖Lp′ (Ω,ω) + ‖h1‖L∞(Ω)‖u‖

p/p′

W 1,p
0 (Ω,ω)

+ ‖h2‖L∞(Ω,ω)‖u‖
p/p′

W 1,p
0 (Ω,ω)

+

+ ‖K2‖Lp′ (Ω,ω) + ‖h3‖L∞(Ω)‖u‖
p/p′

W 1,p
0 (Ω,ω)

+ ‖h4‖L∞(Ω)‖u‖
p/p′

W 1,p
0 (Ω,ω)

+

+ ‖g/ω‖Lq(Ω,ω)‖u‖W 1,p
0 (Ω,ω)

]
‖ϕ‖W 1,p

0 (Ω,ω).

Since B(u, ·) is linear, for each u ∈W 1,p
0 (Ω, ω), there exists a linear and continuous

operator

A : W 1,p
0 (Ω, ω)→ [W 1,p

0 (Ω, ω)]∗
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such that 〈Au,ϕ〉 = B(u, ϕ), for all u, ϕ ∈W 1,p
0 (Ω, ω) (where 〈f, x〉 denotes the value

of the linear functional f at the point x) and

‖Au‖∗ ≤ ‖K1‖Lp′ (Ω,ω) + ‖h1‖L∞(Ω)‖u‖
p/p′

W 1,p
0 (Ω,ω)

+ ‖h2‖L∞(Ω,ω)‖u‖
p/p′

W 1,p
0 (Ω,ω)

+

+ ‖K2‖Lp′ (Ω,ω) + ‖h3‖L∞(Ω)‖u‖
p/p′

W 1,p
0 (Ω,ω)

+ ‖h4‖L∞(Ω)‖u‖
p/p′

W 1,p
0 (Ω,ω)

+

+ ‖g/ω‖Lq(Ω,ω)‖u‖W 1,p
0 (Ω,ω).

Consequently, problem (P) is equivalent to the operator equation

Au = T, u ∈W 1,p
0 (Ω, ω).

Step 4. Using condition (H2), (H6) and (H9), we have

〈Au1 −Au2, u1 − u2〉 = B(u1, u1 − u2)−B(u2, u1 − u2) =

=

∫
Ω

ωA(x, u1,∇u1).∇(u1 − u2) dx+

∫
Ω

b(x, u1,∇u1)(u1 − u2)ω dx+

+

∫
Ω

(u1 − u2)g u1 dx−

−
∫
Ω

ωA(x, u2,∇u2).∇(u1 − u2) dx−
∫
Ω

b(x, u2,∇u2)(u1 − u2)ω dx−

−
∫
Ω

g(u1 − u2)u2 dx =

=

∫
Ω

ω

(
A(x, u1,∇u1)−A(x, u2,∇u2)

)
.∇(u1 − u2) dx+

+

∫
Ω

(b(x, u1,∇u1)− b(x, u2,∇u2))(u1 − u2)ω dx+

∫
Ω

g (u1 − u2)2 dx ≥

≥ θ1

∫
Ω

ω |∇(u1 − u2)|p dx+ θ2

∫
Ω

|u1 − u2|pω dx ≥

≥ θ ‖u1 − u2‖pW 1,p
0 (Ω,ω)

,

where θ = min {θ1, θ2}.
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Therefore, the operator A is strictly monotone. Moreover, using (H3), (H7)
and (H9), we obtain

〈Au, u〉 = B(u, u) = B1(u, u) +B2(u, u) =

=

∫
Ω

ωA(x, u,∇u).∇u dx+

∫
Ω

b(x, u,∇u)uω dx+

∫
Ω

g u2 dx ≥

≥
∫
Ω

(
Λ1|u|p + λ1|∇u|p − g1|u|

)
ω dx+

+

∫
Ω

(
Λ2|u|p + λ2|∇u|p − g2|u|

)
ω dx ≥

≥ γ ‖u‖p
W 1,p

0 (Ω,ω)
− (‖g1‖Lp′ (Ω,ω) + ‖g2‖Lp′ (Ω,ω))‖u‖W 1,p

0 (Ω,ω),

where γ = min {λ1, λ2,Λ1,Λ2}. Hence, since p > 2, we have

〈Au, u〉
‖u‖W 1,p

0 (Ω,ω)

→∞, as ‖u‖W 1,p
0 (Ω,ω)→∞,

that is, A is coercive.
Step 5. We need to show that the operator A is continuous.

Let um→u in W 1,2
0 (Ω, ω) as m→∞. We have

|B1(um, ϕ)−B1(u, ϕ)| ≤
n∑
j=1

∫
Ω

|Aj(x, um,∇um)−Aj(x, u,∇u)||Djϕ|ω dx =

=

n∑
j=1

∫
Ω

|Fjum − Fju||Djϕ|ω dx ≤

≤
n∑
j=1

‖Fjum − Fju‖Lp′ (Ω,ω)‖Djϕ‖Lp(Ω,ω) ≤

≤
n∑
j=1

‖Fjum − Fju‖Lp′ (Ω,ω)‖ϕ‖W 1,p
0 (Ω,ω)

and

|B2(um, ϕ)−B2(u, ϕ)| =

=

∣∣∣∣ ∫
Ω

(b(x, um,∇um)− b(x, u,∇u))ϕω dx+

∫
Ω

g ϕ (um − u) dx

∣∣∣∣ ≤
≤
∫
Ω

|Gum −Gu||ϕ|ω dx+

∫
Ω

|g| |ϕ| |um − u| dx ≤

≤ ‖Gum −Gu‖Lp′ (Ω,ω)‖ϕ‖Lp(Ω,ω) + ‖g/ω‖Lq(Ω,ω)‖ϕ‖Lp(Ω,ω)‖um − u‖Lp(Ω,ω) ≤

≤ ‖Gum −Gu‖Lp′ (Ω,ω)‖ϕ‖W 1,p
0 (Ω,ω) + ‖g/ω‖Lq(Ω,ω)‖ϕ‖W 1,p

0 (Ω,ω)‖um − u‖W 1,p
0 (Ω,ω)
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for all ϕ ∈W 1,2
0 (Ω, ω). Hence,

|B(um, ϕ)−B(u, ϕ)| ≤ |B1(um, ϕ)−B1(u, ϕ)|+ |B2(um, ϕ)−B2(u, ϕ)| ≤

≤
[ n∑
j=1

‖Fjum − Fju‖Lp′ (Ω,ω)+

+ ‖Gum −Gu‖Lp′ (Ω,ω) + ‖g/ω‖Lq(Ω,ω)‖um − ‖W 1,p
0 (Ω,ω)

]
‖ϕ‖W 1,p

0 (Ω,ω).

Then we obtain

‖Aum −Au‖∗ ≤
n∑
j=1

‖Fjum − Fju‖Lp′ (Ω,ω)+

+ ‖Gum −Gu‖Lp′ (Ω,ω) + ‖g/ω‖Lq(Ω,ω)‖um − u‖W 1,p
0 (Ω,ω).

Therefore, using (3.2) and (3.3) we have ‖Aum −Au‖∗→ 0 as m → ∞, that is, A is
continuous (and this implies that A is hemicontinuous).

Therefore, by Theorem 3.1, the operator equation Au = T has a unique solution
u ∈W 1,p

0 (Ω, ω) and it is the unique solution for problem (P).
Step 6. In particular, by setting ϕ = u in Definition 2.5, we have

B(u, u) = B1(u, u) +B2(u, u) = T (u). (3.5)

Hence, using (H3), (H7), (H9) and γ = min {λ1, λ2,Λ1,Λ2}, we obtain

B1(u, u) +B2(u, u) =

∫
Ω

ωA(x, u,∇u).∇u dx+

∫
Ω

b(x, u,∇u)uω dx+

∫
Ω

g u2 dx ≥

≥
∫
Ω

(
Λ1|u|p + λ1|∇u|p − g1|u|

)
ω dx+

+

∫
Ω

(
Λ2|u|p + λ2|∇u‖p − g2|u|

)
ω dx ≥

≥ γ‖u‖p
W 1,p

0 (Ω,ω)
− (‖g1‖Lp′ (Ω,ω) + ‖g2‖Lp′ (Ω,ω)) ‖u‖W 1,p

0 (Ω,ω)

and

T (u) =

∫
Ω

f0 u dx+

n∑
j=1

∫
Ω

fj Dju dx ≤

≤ ‖f0/ω‖Lp′ (Ω,ω)‖u‖Lp(Ω,ω) +

n∑
j=1

‖fj/ω|Lp′ (Ω)‖Dju‖Lp(Ω,ω) ≤

≤
( n∑
j=0

‖fj/ω‖Lp′ (Ω)

)
‖u‖W 1,p

0 (Ω,ω).
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Therefore, in (3.5), we obtain

γ ‖u‖p
W 1,p

0 (Ω,ω)
− (‖g1‖Lp′ (Ω,ω) + ‖g2‖Lp′ (Ω,ω)) ‖u‖W 1,p

0 (Ω,ω) ≤

≤
( n∑
j=0

‖fj/ω‖Lp′ (Ω,ω)

)
‖u‖W 1,p

0 (Ω,ω),

and we obtain

‖u‖W 1,p
0 (Ω,ω) ≤

1

γp′/p

( n∑
j=0

‖fj/ω‖Lp′ (Ω,ω) + ‖g1‖Lp′ (Ω,ω) + ‖g2‖Lp′ (Ω,ω)

)p′/p
.
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