PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Datko-type theorems concerning asymptotic behaviour of exponential type in mean

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we study the concept of exponential (in)stability in mean for stochastic skew-evolution semiflows, in which the exponential (in)stability in the classical sense is replaced by an average with respect to a probability measure. Our paper consists of three major results. The first is to obtain Datko-type characterizations for the exponential stability in mean of stochastic skew-evolution semiflows. Next, we acquire Datko-type characterizations for the exponential instability in mean by extending the stability techniques. The last is to extend Lyapunov-type equations to the case of exponential (in)stability in mean.
Rocznik
Strony
451--470
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
  • Faculty of Mathematics and Informatics, Hanoi University of Science and Technology, 1 Dai Co Viet, Hanoi, Vietnam
Bibliografia
  • [1] L. Arnold, Random Dynamical Systems, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998.
  • [2] G. Da Prato, J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications (45), Cambridge University Press, 1992.
  • [3] R. Datko, Extending a theorem of A.M. Liapunov to Hilbert space, J. Math. Anal. Appl. 32 (1970), 610–616.
  • [4] R. Datko, Uniform asymptotic stability of evolutionary processes in a Banach space, SIAM J. Math. Anal. 3 (1972), 428–445.
  • [5] P.V. Hai, Discrete and continuous versions of Barbashin-type theorem of linear skew-evolution semiflows, Appl. Anal. 90 (2011), 1897–1907.
  • [6] P.V. Hai, Two new approaches to Barbashin theorem, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 19 (2012), 773–798.
  • [7] P.V. Hai, Polynomial stability and polynomial instability for skew-evolution semi-flows, Result. Math. 74 (2019), Article no. 175.
  • [8] M. Megan, A.L. Sasu, B. Sasu, On uniform exponential stability of linear skew-product semiflows in Banach spaces, Bull. Belg. Math. Soc. Simon Stevin 9 (2002), 143–154.
  • [9] M. Megan, A.L. Sasu, B. Sasu, Exponential instability of linear skew-product semiflows in terms of Banach function spaces, Results Math. 45 (2004), 309–318.
  • [10] P. Meyer-Nieberg, Banach Lattices, Springer-Verlag, Berlin, Heidelberg, New York, 1991.
  • [11] A. Pazy, On the applicability of Lyapunov’s theorem in Hilbert space, SIAM J. Math. Anal. 3 (1972), 291–294.
  • [12] C. Preda, P. Preda, Lyapunov theorems for the asymptotic behavior of evolution families on the half-line, Canad. Math. Bull. 54 (2011), 364–369.
  • [13] S. Rolewicz, On uniform N-equistability, J. Math. Anal. Appl. 115 (1986), 434–441.
  • [14] D. Stoica, M. Megan, On nonuniform dichotomy for stochastic skew-evolution semiflows in Hilbert spaces, Czechoslovak Math. J. 62 (2012), 879–887.
  • [15] J.M.A.M. van Neerven, Exponential stability of operators and operator semigroups, J. Funct. Anal. 130 (1995), 293–309.
  • [16] T. Yue, Barbashin type characterizations for the uniform polynomial stability and instability of evolution families, Georgian Math. J. 29 (2022), 953–966.
  • [17] J. Zabczyk, Remarks on the control of discrete-time distributed parameter systems, SIAM J. Control 12 (1974), 721–735.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3302e508-eada-43f1-b1e3-0dfa11b21617
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.