PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Use of graphene oxide as an active layer on a tapered fibre for detection of volatile liquid vapours : ammonium hydroxide, trimethyl phosphate, and 1,4-thioxane

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper investigates the application of a G-Flake graphene oxide (GO) layer as an innovative coating material for optical fibre tapers, enhancing the sensor sensitivity to various volatile liquid vapours. The results confirm that this combination is effective because the formation of a monolayer of adsorbed gas alters light propagation in the tapered optical fibre. These changes are detectable across a broad wavelength spectrum, ranging from visible to infrared. In this study, three volatile liquids - trimethyl phosphate (TMP), 1,4-thioxane (THX), and ammonium hydroxide (NH₄OH) - were tested using pure THX and TMP without dilution, while NH₄OH was applied as a 25% solution. The gases used in the research simulate chemical warfare agents, such as sulphur mustard and sarin. The authors used the differential method to analyse the results, which revealed the formation of characteristic peak pairs around a wavelength of 795 nm. The peak heights and the distance between them varied over time in response to exposure to the selected vapours. Additionally, the amplitude of the transmitted power changes linearly in the first 30-45 min, with the highest power change rate observed for TMP (0.026 dBm/min at 789.2 nm). The greatest contrast between maximum and minimum power levels was observed for TMP, reaching 4.45 dBm. An approach was presented that demonstrates how a tapered fibre covered with GO can be used as the basis for developing a low-cost gas and vapour sensor.
Rocznik
Strony
art. no. e154305
Opis fizyczny
Bibliogr. 40 poz., rys., wykr.
Twórcy
  • Institute of Micromechanics and Photonics, Warsaw University of Technology, ul. św. Andrzeja Boboli 8, 02-525 Warsaw, Poland
  • Institute of Applied Physics, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
  • Institute of Applied Physics, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
  • Institute of Applied Physics, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
autor
  • Institute of Micromechanics and Photonics, Warsaw University of Technology, ul. św. Andrzeja Boboli 8, 02-525 Warsaw, Poland
  • Faculty of Chemical and Process Engineering, Warsaw University of Technology, ul. Waryńskiego 1, 00-645, Warsaw, Poland
  • Department of Functional Materials, Łukasiewicz Research Network – Institute of Microelectronics and Photonics, al. Lotników 32/46, 02-668 Warsaw, Poland
  • Department of Functional Materials, Łukasiewicz Research Network – Institute of Microelectronics and Photonics, al. Lotników 32/46, 02-668 Warsaw, Poland
  • Institute of Applied Physics, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
Bibliografia
  • [1] Leal-Junior, A. et al. The role of optical fiber sensors in the new generation of healthcare devices: A review. Sens. Diagn. 3, 1135-1158 (2024). https://doi.org/10.1039/d4sd00032c.
  • [2] Zhao, Y. et al. Infrared tapered fiber ring sensor for environmental detection of organic pollutants. Sens. Actuators B Chem. 405, 135361 (2024). https://doi.org/10.1016/j.snb.2024.135361.
  • [3] Bohnert, K., Gabus, P., Kostovic, J. & Brändle, H. Optical fiber sensors for the electric power industry. Opt. Lasers Eng. 43, 511-526 (2005). https://doi.org/10.1016/j.optlaseng.2004.02.008.
  • [4] Wang, P. et al. Highly sensitive refractive index and magnetic field sensor based on long-period fiber grating inscribed in tapered optical fiber. Optik 289, 171289 (2023). https://doi.org/10.1016/j.ijleo.2023.171289.
  • [5] Zheng, H. et al. High-sensitivity distributed optical fiber sensor for simultaneous hydrostatic pressure and temperature measurement based on birefringent frequency-scanning φ-OTDR. Opt. Laser Technol. 175, 110756 (2024). https://doi.org/10.1016/j.optlastec.2024.110756.
  • [6] Schenato, L., Galtarossa, A., Pasuto, A. & Palmieri, L. Distributed optical fiber pressure sensors. Opt. Fiber Technol. 50, 102239 (2020). https://doi.org/10.1016/j.yofte.2020.102239.
  • [7] Kepak, S., Stolarik, M., Cubik, J., Nedoma, J. & Benes, P. Fiber optic vibration sensor for applications in the field of ground vibrations. Opt. Laser Technol. 176, 111017 (2024). https://doi.org/10.1016/j.optlastec.2024.111017.
  • [8] Chen, G. et al. Optical fiber gas sensor with multi-parameter sensing and environmental anti-interference performance. J. Ind. Inf. Integ. 38, 100565 (2024). https://doi.org/10.1016/j.jii.2024.100565.
  • [9] Przybysz, N., Marc, P., Tomaszewska, E., Grobelny, J. & Jaroszewicz, L. R. Pure and Au nanoparticles doped higher alkanes for anoptical fiber temperature threshold sensor. Proc. SPIE 10231, 1023125 (2017). https://doi.org/10.1117/12.2265867.
  • [10] Raghuwanshi, S. K., Kumar, V. & Ansari, M. T. I. Optimizing fiber-optic surface plasmon resonance-based sensors: An exploration of different taper profiles and metal choices for enhanced performance. Opt. Eng. 64, 016101 (2025). https://doi.org/10.1117/1.OE.64.1.016101.
  • [11] Raghuwanshi, S. K., Ansari, M. T. I. & Shadab, A. Analysis of tapered fiber-optic surface plasmon resonance (SPR) bio-sensing probe with the effect of different taper profiles and metal choices. IEEE Trans. Plasma Sci. 52, 295-1303 (2024). https://doi.org/10.1109/TPS.2024.3392672.
  • [12] Raghuwanshi, S. K. Analysis of tapered fiber optic surface plasmon resonance bio-sensor chip with highly perturbed taper profiles. IEEE Trans. Nanobioscience 23, 439-446 (2024). https://doi.org/10.1109/TNB.2024.3376824.
  • [13] Tang, J. et al. Optical fiber bio-sensor for phospholipase using liquid crystal. Biosens. Bioelectron. 170, 112547 (2020). https://doi.org/10.1016/j.bios.2020.112547.
  • [14] Moś, J., Stasiewicz, K. A., Matras-Postołek, K. & Jaroszewicz, L. R. Thermo-optical switching effect based on a tapered optical fiber and higher alkanes doped with ZnS:Mn. Materials 13, 5044 (2020). https://doi.org/10.3390/ma13215044.
  • [15] Kiczor, A. & Mergo. P. Comparison of PMMA layers doped with methyl red and CdSe quantum dots for application in fiber optic. Opto-Electron. Rev. 32, e151987 (2024). https://doi.org/10.24425/opelre.2024.151987.
  • [16] Qiu, T., Geng, C., Wu, R. & Tang, X. Metal coating enhancement of optical fiber distributed radiation sensors based on optical frequency domain reflectometry technology. Opt. Fiber Technol. 73, 103063 (2022). https://doi.org/10.1016/j.yofte.2022.103063.
  • [17] Zhao, Y., Li, X., Zhou, X.-G. & Zhang, Y.-N. Review on the graphene based optical fiber chemical and biological sensors. Sens. Actuators B Chem. 231, 324-340 (2016). https://doi.org/10.1016/j.snb.2016.03.026.
  • [18] Chu, R., Tan, Y., Zhou, F. & Liu, Y. Sensitivity-enhanced humidity sensor based on a surface core fiber decorated with graphene oxide. Sens. Actuators Rep. 8, 100207 (2024). https://doi.org/10.1016/j.snr.2024.100207.
  • [19] Eda, G., Fanchini, G. & Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 3, 270-274 (2008). https://doi.org/10.1038/nnano.2008.83.
  • [20] Mushahary, N. et al. Recent developments on graphene oxide and its composite materials: From fundamentals to applications in biodiesel synthesis, adsorption, photocatalysis, supercapacitors, sensors and antimicrobial activity. Results Surf. Interfaces 15, 100225 (2024). https://doi.org/10.1016/j.rsurfi.2024.100225.
  • [21] Krukowski, P. et al. Graphene on quartz modified with rhenium oxide as a semitransparent electrode for organic electronics. Opto-Electron. Rev. 30, e141953 (2022). https://doi.org/10.24425/opelre.2022.141953.
  • [22] Alkhabet, M. M. et al. Room temperature operated hydrogen sensor using palladium coated on tapered optical fiber. Mat. Sci. Eng. B 287, 116092 (2023). https://doi.org/10.1016/j.mseb.2022.116092.
  • [23] Zhong, X. et al. Recent advances in optical fiber grating sensors for detection of organic substances. Chem. Eng. J. 492, 152260 (2024). https://doi.org/10.1016/j.cej.2024.152260.
  • [24] Kang, X. et al. A label-free biosensor for pepsin detection based on graphene oxide functionalized micro-tapered long period fiber grating. Sens. Actuators Rep. 5, 100139 (2023). https://doi.org/10.1016/j.snr.2023.100139.
  • [25] Priya, A. K., Muruganandam, M., Venkatraman, Y. & Sagadevan, S. Recent advances and synergistic interactions in graphene-based polymer nanocomposites for enhanced gas sensing applications. J. Alloys Compd. 1008, 176599 (2024). https://doi.org/10.1016/j.jallcom.2024.176599.
  • [26] Moura, P. C., Pivetta, T. P., Vassilenko, V., Ribeiro, P. A. & Raposo, M. Graphene oxide thin films for detection and quantification of industrially relevant alcohols and acetic acid. Sensors 23, 462 (2023). https://doi.org/10.3390/s23010462.
  • [27] Mandeep, S., Raghuwanshi, S. & Prakash, O. Ultra-sensitive fiber optic gas sensor using graphene oxide coated long period gratings. IEEE Photonics Technol. Lett. 31, 1473-1476 (2019). https://doi.org/10.1109/LPT.2019.2932764.
  • [28] Yang, Q. et al. Highly sensitive and selective sensor probe using glucose oxidase/gold nanoparticles/graphene oxide functionalized tapered optical fiber structure for detection of glucose. Optik 208, 164536 (2020). https://doi.org/10.1016/j.ijleo.2020.164536.
  • [29] Alkhabet, M. M. et al. Palladium/graphene oxide nanocomposite for hydrogen gas sensing applications based on tapered optical fiber. Materials 15, 8167 (2022). https://doi.org/10.3390/ma15228167.
  • [30] Qi, Q. et al. A gas-liquid sensor functionalized with graphene-oxide on chalcogenide tapered fiber by chemical etching. J. Light. Technol. 39, 6976-6984 (2021). https://doi.org/10.1109/JLT.2021.3104407.
  • [31] Yu, C. et al. Miniature fiber-optic NH3 gas sensor based on Pt nanoparticle-incorporated graphene oxide. Sens. Actuators B Chem. 244, 107-113 (2017). https://doi.org/10.1016/j.snb.2016.12.126.
  • [32] Xiao, Y. et al. Reduced graphene oxide for fiber optic toluene gas sensing. Opt. Exp. 25, 28290-28302 (2016). https://doi.org/10.1364/OE.24.028290.
  • [33] Stasiewicz, K. A., Jakubowska I., Korec, J. & Matras-Postołek, K. Modification of higher alkanes by nanoparticles to control light propagation in tapered fibers. Micromachines 11, 1006 (2020). https://doi.org/10.3390/mi11111006.
  • [34] Brambilla G. Optical fiber nanowires and microwires: A review. J. Opt. 12, 043001 (2010). https://doi.org/10.1088/2040-8978/12/4/043001.
  • [35] Birks, T. A. & Li, Y. W. The shape of fiber tapers. J. Light. Technol. 10, 432-438 (1992). https://doi.org/10.1109/50.134196.
  • [36] Stasiewicz, K. A. et al. The biopolymer active surface for optical fiber sensors. Polymers 16, 2114 (2024). https://doi.org/10.3390/polym16152114.
  • [37] Jung, Y., Brambilla, G. & Richardson, D. J. Broadband single-mode operation of standard optical fibers by using a sub-wavelength optical wire filter. Opt. Exp. 16, 14661-14667 (2008). https://doi.org/10.1364/OE.16.014661.
  • [38] Kowiorski, K. et al. Compositing graphene oxide with carbon fibers enables improved dynamical thermomechanical behavior of papers produced at a large scale. Carbon 206, 26-36 (2023). https://doi.org/10.1016/j.carbon.2023.02.009.
  • [39] Djas, M. et al. Flake graphene as an innovative additive to grease with improved tribological properties. Materials 15, 7775 (2022). https://doi.org/10.3390/ma15217775.
  • [40] Stasiewicz, K. A., Jakubowska, I., Moś, J., Kosturek, R. & Kowiorski, K. In-line gas sensor based on the optical fiber taper technology with a graphene oxide layer. Electronics 12, 830 (2023). https://doi.org/10.3390/electronics12040830.
Uwagi
1. This work was supported by the Program of the Republic of Poland – Research Grant MUT project no. UGB 531-000031-W900-22.
2. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-32fc105e-1e63-4055-8003-95d036b55199
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.